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ABSTRACT 

Travel time and its reliability are considered as intuitive measure of service quality by 

transportation agencies. Moreover, highly reliable travel times allow for arriving at work or other 

destinations on time in the context of personal travel and facilitate just-in-time logistics services 

in freight operations. Travel times are the result of the traffic congestion. By considering different 

impact factors and shortcoming of the sensing technologies, this dissertation proposed methods for 

travel time and its reliability estimation.  

First of all, this dissertation presented a method to estimate corridor-level travel times 

based on data collected from roadside radar sensors, considering spatially correlated traffic 

conditions. Link-level and corridor-level travel time distributions are estimated using these travel 

time estimates and compared with the ones estimated based on probe vehicle data. The maximum 

likelihood estimation is used to estimate the parameters of Weibull, gamma, normal, and 

lognormal distributions. According to the log likelihood values, lognormal distribution is the best 

fit among all the tested distributions. Corridor-level travel time reliability measures are extracted 

from the travel time distributions. The proposed travel time estimation model can well capture the 

temporal pattern of travel time and its distribution. 

Second, a travel time reliability measure estimation method is proposed by incorporating 

standstill distance and time headway distributions in car-following models. The method is based 

on simplified two-component travel time distribution.  By using Monte Carlo simulation, the 

speed-density region under congested condition and the travel time reliability measures can be 

generated. The results shows that the speed-density region derived from the steady-state Pipes 

model encloses most of the field data. Moreover, the proposed method estimate travel time 

reliability measures more precisely and faster, compared with using VISSIM simulation. 
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Finally, a work zone travel time estimation approach is proposed in this dissertation. First, 

the impact of work zone on capacity is investigated. For the work zone capacity prediction 

framework, the predicted upper bound of capacity is close to the maximum 15-min flow rate.  

Moreover, based on the predicted capacity, density at capacity and free flow speed, work zone 

travel times are estimated by using the modified segment speed estimation model from the study 

of Newman. The estimated travel times roughly followed the pattern of the INRIX travel times. 

Moreover, the travel time reliability indices are estimated directly from the estimated travel times. 

The result shows that the travel time reliability indices based on estimated travel times are close 

to the indices based on INRIX travel times. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Many metropolitan areas are facing traffic congestion problems due to the increasing of 

travel demand and the limited funding for road network expansion. Therefore, Intelligent 

Transportation System (ITS) technologies, such as Advanced Transportation Management 

Systems (ATMS) and Advanced Traveler Information Systems (ATIS), are widely deployed to 

improve the travel experience of individuals and the operational performance of existing 

transportation systems.  

Travelers can benefit from the information provided by ATIS, such as travel time, to make 

better travel decision in terms of route, mode and departure time choices. Highly reliable travel 

times allow for arriving at work or other destinations on time in the context of personal travel and 

facilitate just-in-time logistics services in freight operations, while highly variable travel times 

indicate unpredictable trip times and low quality of transportation services (Turochy and Smith, 

2002). Moreover, from transportation agencies’ point of view, travel time and its reliability are 

considered as more intuitive measure of service quality, compared to the levels of service defined 

in the highway capacity manual (Chen et al., 2003). Travel time and its reliability can also be used 

for cost-benefit analysis of drivers and major road schemes (Peer et al., 2012; Mackie et al., 2001). 

The accuracy of travel time and its reliability information provided by ATIS affects both travelers’ 

and transportation agencies’ decisions. Therefore, engineers and researchers continually search for 

effective ways to provide robust and accurate method to estimation travel time and its reliability. 

Travel times are the result of the traffic congestion. In order to estimate travel time 

reliability under recurring and nonrecurring congestion, it is important to understand the causes 

1 
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affecting variability. Seven root causes of traffic congestion have been defined by Federal 

Highway Administration (FHWA). They are traffic incidents, work zones, weather, fluctuations 

in normal traffic, special events, traffic control devices and physical bottlenecks (Cambridge 

Systematics and Texas Transportation Institute, 2005). As shown in Figure 1.1, among the seven 

root causes, physical bottlenecks, which causes recurring congestion, contribute 40% of the travel 

delay on road network. Work zones, which cause nonrecurring congestion, contribute to 10% of 

the travel delay on road networks. Moreover, driver behavior, such as time headways, affects the 

capacity of freeways. And, the capacity of freeways has been widely considered as an important 

parameter in delay-volume function to estimate travel time. Consequently, by affecting the 

capacity of freeways, driver behavior affects the travel times of freeways. Therefore, by studying 

physical bottlenecks, work zone and driver behavior (e.g. time headways and standstill distances), 

travel time and its reliability on freeways can be well understood and estimated.  

 

Figure 1.1 The Sources of Congestion National Summary (Cambridge Systematics and 

Texas Transportation Institute, 2005) 
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Travel time and its reliability can be collected or estimated based on various advanced 

technologies. Travel times can be estimated from traffic data (e.g. flow rate, speed and density) or 

collected directly. Several technologies, such as point detectors (e.g. Radar sensor and loop 

detector), probe vehicle technologies and license plate matching, are widely used to measure travel 

times. Different technology has different advantages and disadvantages. For example, the accuracy 

of probe vehicle technology is highly depend on the sample size and may cause concerns over 

citizen privacy.  License plate matching is less practical for high-speed traffic or long road sections 

with low through traffic. Point-detectors only provide point speed, which is difficult to be used to 

estimate accurate travel time directly (Vanajakshi et al., 2009). As a result, it is desired to develop 

a proper method, which considers the shortcoming of the technology, to precisely estimate travel 

time and its reliability. 

With the advances in sensing technologies for intelligent transportation systems, more 

information, such as road surface condition, event data and traffic data, can be extracted from 

different sources. This information makes it possible to estimate the travel time and its reliability 

under recurring and nonrecurring congestion.  

The objective of this dissertation is to develop travel time and its reliability estimation 

methods, considering different impact factors and shortcoming of the sensing technologies. In 

particular, this research addresses the impact of physical bottlenecks, driver behavior (e.g. time 

headways and standstill distances) and work zone on travel time reliability. 

1.2 Research Overview 

This study aims at developing the estimation and prediction methods of travel time 

reliability on urban freeways. Data-driven and simulation-based methods are two major methods 

utilized to estimate travel time and its reliability. Moreover, travel time reliability of work zones 
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is investigated in this study.  Three research questions are discussed in details in the following 

sections. 

 

1.2.1 Research question 1: How to precisely estimate corridor-level travel time and its 

reliability?  

 Travel time reliability is considered as one of the key performance measures of road 

networks and corridors (Van Lint et al., 2008; Van Lint and Van Zuylen, 2005). Recently, travel 

time reliability attracted significant attention due to the influence of travel time variability on route, 

departure time, and mode choices. Operating agencies pay more attentions to monitor the 

reliability of transportation systems through various data sources (e.g. Wavetronix sensor and 

probe vehicle).  Moreover, the impact of traffic incidents and bad weather on travel time is 

uncovered by collecting event and weather data. Consequently, the traveler information system 

can provide reliability-related information that enables travelers to meet their on-time arrival goals. 

Moreover, traffic network design problems have also incorporated travel time reliability as a factor 

(Chootinan et al., 2005; Sumalee et al., 2006) 

Although extensive research has been done on travel time reliability, several challenges 

still need to be addressed. One of these challenges is how to address spatial and temporal 

correlations in estimating travel time and its reliability. Although travel times can be easily 

integrated across time (successive time frames constituting a trip) and space (adjacent links 

constituting a path), travel time distributions are generally non-additive because of the spatial and 

temporal correlations. In this study, spatial correlation is considered in travel time estimation 

model. Considering the correlation among multiple bottlenecks along a freeway corridor, the travel 

time along a stretch of freeway can be computed as the sum of a set of correlated link travel times. 
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Accordingly, the corridor-level travel time distributions, as well as various travel time reliability 

measures, can be estimated.  

The first objective is to quantify segment- and corridor-level reliability measures on urban 

freeways. By analyzing urban freeway traffic data and probe vehicle data, a corridor-level travel-

time reliability measure estimation model was developed. Because probe vehicles directly collect 

travel-time data, segment-level and corridor-level travel-time distributions can be easily estimated. 

In the absence of the direct measurement of travel times, point measurements of traffic conditions 

obtained from loop detectors or roadside sensors were used to estimate travel time and reliability 

measures along a stretch of urban freeway. In particular, the flow rates and speeds measured by 

roadside radar sensors on consecutive freeway segments were used to estimate segment travel-

time distributions and correlation coefficients between segments. Accordingly, corridor-level 

travel-time reliability measures were developed. 

 

1.2.2 Research question 2: How to consider stochastic nature of driver behavior into the 

travel time reliability analysis? 

Driver behavior, in terms of following headways and standstill distance, affects the 

capacity of freeways (Cambridge Systematics and Texas Transportation Institute, 2005). These 

driver behavior parameters are widely applied in microscopic simulation software.  To investigate 

the impact of the stochastic nature of driver behavior on travel time reliability, microscopic 

simulation models are used in this study. The core of microsimulation is the car-following model, 

which describes the interaction of a vehicle and the preceding vehicle traveling in the same lane. 

Standstill distances (i.e. the distance between stopped vehicles) and following time headways (i.e. 

the time between successive vehicles) are two of the important parameters in most car-following 
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models, such as Wiedemann 99 (in VISSIM), Van Aerde model (in INTEGRATION) and Pitt 

model (in FRESIM). Time headway and standstill distance are also associated with the aggression 

of the driver population. Some researchers pointed out that the distribution of time headway and 

standstill distance should be introduced in car-following models (Dijker et al., 1998; Houchin et 

al., 2015). However, the existing microsimulation models usually only allow time headway and 

standstill distance to be input as constants.   

The car-following behavior calibration concerns with steady-state behavior and non-

steady-state behavior (Rakha and Crowther, 2003). The calibration of steady-state behavior 

concerns with the capacity, speed and jam density. The non-steady-state behavior decides how 

vehicles move from one steady state to another and is beyond the scope of this study. 

The second objective is to investigate macroscopic traffic flow properties of incorporating 

stochastic standstill distance and time headway parameters in various freeway car following 

models. In particular, car following models implemented in VISSIM, INTEGRATION and 

FRESIM under steady-state conditions are considered. Speed-density relationships are generated 

using four different input modes: deterministic overall headway and standstill distance, 

deterministic headways and standstill distances by vehicle lead-follow type, stochastic overall 

headway and standstill distance, and stochastic headway and standstill distance by vehicle lead-

follow type. The speed-density relationships are compared with the VISSIM simulation output 

under various parameter assumptions and with real world observations. 

The third objective is to develop a method to estimate corridor-level travel time reliability 

measures by incorporating stochastic standstill distance and time headway parameters in FRESIM 

car-following models. The reliability measures are compared with the VISSIM simulation output 

and field data. 
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1.2.3 Research question 3: How to estimate work zone travel time reliability? 

Work zones on freeways usually cause serious disruptions to traffic, significant delays and 

traffic safety issues. To mitigate the impact and plan proper strategies, forecasting the work zone 

capacity on an existing freeway is important. Moreover, Edwards and Fontaine (2012) pointed out 

that travel time reliability in work zone is difficult to quantify and extremely useful to evaluate a 

work zone’s impact. Therefore, it is necessary to develop a method to estimate work zone travel 

time and its reliability. 

Numerous statistical and simulation based methods have been proposed to estimate work 

zone capacity(Al-Kaisy and Hall, 2003; Heaslip et al., 2008; Kim et al., 2000; Krammes and 

Lopez, 1994; Racha et al., 2008; Sarasua et al., 2006; Weng and Meng, 2015, 2011). However, 

although speed, volume and density relationship has been widely used to estimate the capacity of 

freeways (Modi et al., 2014), only a few work zone capacity estimation methods were derived 

from speed-volume relationships (Racha et al., 2008; Sarasua et al., 2006; Weng and Meng, 2015).   

Moreover, several models, such as Davidson (1978), Akçelik (1991) and Conical (Spiess, 

1990) function, have been proposed to estimated travel time. Newman (1986) proposed a travel 

time estimation method considering the impact factors on freeway capacity, density at capacity 

and free flow speed. Moses et al. (2013) pointed out the accuracy of these models is heavily 

dependent on accurately specifying free-flow speed and capacity, which can be derived from 

speed-density-volume relationship.  

In order to estimate work zone travel time and its reliability, developing a speed-density-

volume relationship estimation method is the fourth objective. Consequently, work zone travel 

time and its reliability can be estimated based on the estimated speed-density-volume relationship. 

Moreover, based on the speed-density model, a framework to predict capacity of work zone is 
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proposed. The capacity prediction model captures the relationship between capacity and work zone 

characteristics by considering the impact of work zone on free-flow speed.  

1.3 Dissertation Structure 

This dissertation is organized as follows. Chapter 2 provides a comprehensive literature 

review on travel time and its reliability estimation methods, stochastic nature of driver behavior 

and work zone capacity estimation methods. Chapter 3 discusses the methodology of estimating 

freeway travel time and it reliability using radar sensor data. Chapter 4 presents a modeling 

approach to generate travel time reliability measures by incorporating stochastic standstill distance 

and time headway parameters in car-following model. Chapter 5 proposed a capacity prediction 

method and a travel time reliability estimation method of work zones. Conclusions are presented 

in Chapter 6. 
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CHAPTER 2. LITERATURE REVEW 

This chapter presents literature review of conceptual, theoretical and methodological topics 

related to each research question. In Section 2.1, travel time and its reliability estimation models 

are reviewed. Section 2.2 represents a comprehensive review of headway distribution, car 

following models and microscopic traffic simulation models considering randomly-distributed 

parameters. The work zone capacity estimation and prediction method are reviewed in section 2.3. 

2.1 Estimation Methods of Travel Time and Its Reliability  

With the advances in sensing technology, a number of travel time estimation methods have 

been proposed based on data collected from various sources (e.g., Soriguera and Robuste, 2011; 

Tam and Lam, 2008). Reviews of the research efforts on travel time estimation and prediction 

methods can be found in Mori et al. (2015) and Vlahogianni et al. (2014). In particular, loop 

detectors have been widely used to measure traffic conditions at specific locations. Link travel 

times can be estimated by simply extending the point speed measurements to the entire link 

(Soriguera and Robusté, 2011; van Lint and van der Zijpp, 2003). Moreover, to capture the traffic 

dynamics along the link, several methods have been proposed to estimate travel time based on 

traffic flow theories (Aksoy and Celikoglu, 2012; Coifman, 2002; Deniz et al., 2013; Van Arem 

et al., 1997; Zhang, 2006). Dailey (1991) presented a simple continuous traffic flow model to 

estimate delay time between two loop detectors. Moreover, the model allow to estimate the travel 

time between two loop detectors. Coifman (2002) proposed a link travel time estimation method, 

which exploits basic traffic flow theory to extrapolate local conditions to an extend link. Recently, 

Yang et al. (2016) developed a travel time estimation method based on General Motors car-

following model. Some travel time estimation methods are based on flow conservation and 
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propagation principles (e.g., Celikoglu, 2013a, 2013b, 2007). Moreover, a number of queuing-

based travel time models have been developed in the literature (e.g., Daganzo, 1995; Lei et al., 

2015; Nie and Zhang, 2005). These queuing-based models used a vertical queue or point-queue to 

describe traffic dynamics at bottlenecks. The point-queue models assume that the length of the 

queue is zero and the link has unlimited storage capacity. As a result, point-queue–based models 

usually ignore the spillback from a downstream bottleneck.  

In addition, various approaches have been developed to estimate travel time reliability 

(e.g., Kwon et al., 2011; Oh and Chung, 2006; Richardson, 2003). One way to examine travel time 

variation is to look at the distribution of travel times. Different functional forms have been used to 

describe link travel time distributions. Van Lint and Van Zuylen (2005) and Susilawati et al. (2010) 

pointed out that travel time distributions were skewed and had a long right tail. Based on travel 

time data collected using the automatic vehicle identification system, Li et al. (2006) suggested 

that a lognormal distribution best characterized the distribution of travel time when a large time 

window (e.g., in excess of 1 hour) was under consideration and in the presence of congestion, and 

a normal distribution was more appropriate for departure time windows on the order of minutes. 

After using Weibull, exponential, lognormal, and normal distributions to fit the travel time data 

collected from dual-loop detectors, Emam and AI-Deek (2006) suggested that lognormal 

distribution was the best fit. Furthermore, Isukapati et al. (2013) pointed out that corridor-level 

travel time distribution can be constructed on the basis of segment-level travel times. Corridor-

level travel time can be easily calculated by integrating segment-level travel times across time and 

space. However, it is hard to synthesize corridor-level travel time distribution from segment-level 

travel time distributions by considering spatial-temporal correlation.(Caceres et al., 2016; 

Rahmani et al., 2013). Considering the correlation among multiple bottlenecks along a freeway 
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corridor, the travel time along a stretch of freeway can be computed as the sum of a set of correlated 

link travel times (Lei et al., 2015). Accordingly, the corridor-level travel time distributions, as well 

as various travel time reliability measures, can be estimated.  

In order to quantify the travel time reliability, several performance measures are proposed 

(Van Lint et al., 2008). Among these reliability measures, buffer time, 95th percentile travel times, 

buffer index and planning time index are easily understand and have technical merit. Therefore, 

these travel time reliability measures are recommended by Federal Highway Administration 

(FHWA) (Texas Transportation Institute and Cambridge System Inc., 2006). These measures are 

widely applied in research for travel time reliability analysis of freeway. Higatani et al. (2009) 

investigated the impact of traffic incidents on freeway travel time reliability measures, such as 

buffer time, 95th percentile travel times, buffer index and planning time index. Moreover, these 

reliability measures to investigate the impact of work zone and ramp metering on freeway travel 

time reliability (Bhouri et al., 2013; Edwards and Fontaine, 2012).  

In summary, existing travel time estimation methods generally ignored the spatial 

correlation between links with the exception of the study conduct by Chan et al. (2009). To address 

this methodology gap, a travel time estimation model, which considers the spatially correlated 

traffic conditions, is proposed. 

2.2 Effects of Stochastic Driver Behavior Parameter on Travel Time Reliability 

The stochastic nature of operational capacity resulted from the variation of microscopic 

driving behaviors (Wu et al., 2010). Brilon et al. (2005) pointed out that the distribution of capacity 

directly indicates the traffic flow reliability of the freeway. Meanwhile, traffic flow reliability and 

travel time reliability are highly correlated (Dong and Mahmassani, 2009). Consequently, 

microscopic driving behavior impacts travel time reliability. 
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The following time headways and standstill distances vary from vehicle to vehicle and by 

vehicle types (Hoogendoorn and Bovy, 1998; Houchin et al., 2015; Ye and Zhang, 2009;  Durrani 

et al., 2016). Various probability distributions, such as gamma, normal, lognormal and Weibull, 

have been used to describe heterogeneity in time headway data (Zang, 2009; Zhang et al., 2007). 

In particular, Ye and Zhang (2009) analyzed the headways by four different lead-following vehicle 

types—car–truck, truck–car, truck–truck, and car–car, and found that vehicle type–specific and 

mixed vehicle–type distributions are statistically different.  Standstill distance distributions, on the 

other hand, have not been well studied, probably due to the difficulty in data collection. In this 

research, both time headway and standstill distance data are collected and used to fit corresponding 

probability distributions. 

Various car-following models have been developed over the past decades, including Gazis-

Herman-Rothery (GHR) models, safety distance models, linear models, psycho-physical models, 

and fuzzy logic based models (Brackstone and McDonald, 1999). Among these models, some have 

been implemented in commercial microscopic traffic simulation software, such as VISSIM and 

CORSIM. To the best of the authors’ knowledge, none of the existing microscopic traffic 

simulation software allows to input headway and standstill distance parameters as distributions. 

Nevertheless, randomly-distributed drivers’ behavioral parameters have been considered in car-

following models. For example, based on the data obtained by video-taping traffic, Ahn et al. 

(2004) verified that the variation of drivers’ behavioral parameters in Newell’s car-following, that 

is, time displacement and space displacement, were well described by a bivariate normal joint 

distribution. Later, to assure the driver’s behavioral parameters are positive. Dong and 

Mahmassani (2012) used a left-truncated bivariate normal distribution in a modeling approach that 
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combine Newell’s car-following model with a stochastic macroscopic model of flow breakdown 

to predict travel time reliability.   

In summary, existing microscopic simulation software do not allow to input the time 

headways and standstill distances as distribution. Moreover, the impact of vehicle type–specific 

time headway and standstill distance distributions on travel time reliability has not been 

investigated. Consequently, the importance of the stochastic time headway and standstill distance 

for microscopic simulation is investigated in Chapter 4. Moreover, the stochastic standstill and 

time headway are incorporated into car-following model to estimate corridor-level travel time 

reliability on freeway. 

2.3 Impact of Work Zone on Travel Time Reliability 

The travel time reliability of work zones has been estimated using probe vehicle data 

(Edwards and Fontaine, 2012; Haseman et al., 2010). However, the probe vehicle data may not be 

available in some place. Therefore, point measurements of traffic conditions obtained from loop 

detectors or roadside sensors are used to estimate travel time and reliability measures. From point 

measurements, the capacity, which is one of the main factors influencing travel time reliability, 

can be easily derived. Generally, capacity significantly decreases with the presence of a work zone. 

Newman (1986) proposed a segment speed estimation method based on free-flow speed and 

capacity.  By introducing the capacity adjustment factor and free-flow speed adjustment factor, the 

model is revised to consider the capacity and free-flow speed reduction due to weather condition 

and incident.  Recently, Highway Capacity Manual (2016) proposed a method to estimate work 

zone free-flow speed. Therefore, how to precisely estimate work zone capacity becomes a very 

important question for work zone travel time estimation. 
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Work zone capacity estimation approaches can be categorized into three groups: 

parametric, non-parametric and simulation based approaches (Weng and Meng, 2013). Non-

parametric approaches, such as neural-fuzzy logic, decision tree and ensemble tree model, usually 

need a large historic traffic dataset to provide reliable prediction (Adeli and Jiang, 2003; Weng 

and Meng, 2012, 2011). Simulation based approaches have been widely applied to estimate the 

capacity of freeway work zones with different network and lane closure configurations (Chatterjee 

et al., 2010; Heaslip et al., 2010). The microscopic simulation models need to be calibrated to local 

conditions, which is usually a very sophisticated procedure. Parametric approaches use 

predetermined coefficients of the predictors, calibrated based on the data collected from the work 

zone site to estimate work zone capacity. For example, Krammes and Lopez (1994) and Kim et 

al., (2000) developed multi-regression models to estimate short-term work zone capacity. Al-Kaisy 

and Hall (2003) and Al-kaisy et al. (2000) investigated the variables, such as grade, the day of 

week and weather condition, and provided a generic multiplicative model to estimate the long-

term work zone capacity based on the traffic data collected from Ontario, Canada. These 

approaches measured the capacity of work zone as the queue discharge flow rate or maximum 

flow rate. However, Benekohal et al. (2004) pointed out that neither queue discharge rate nor the 

maximum flow rate provided accurate measurement of work zone capacity.  

Consequently, speed-volume-density relationship is an alternative way to derive work zone 

capacity. Numerous models have been developed to describe the speed-volume-density 

relationship, including single-regime and multi-regime models. Two parameter single-regime 

models, such as Greenshields model and Newell’s model, usually cannot fit traffic data under 

congested and non-congested conditions at the same time (Greenshields, 1934; Newell, 1961).  

Multi-regime models, such as Edie model, modified Greenberg model and the cluster analysis 
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based model, use two or more curves to model different traffic flow regimes separately (Drake et 

al., 1967; Edie, 1961; Sun and Zhou, 2005). The major challenge of applying multi-regime model 

is to determine breakpoints in a scientific way (Wang et al., 2011). In order to overcome these 

limitations, MacNicholas (2011) proposed a five-parameter logistic speed-density model, which 

can fit traffic data under the congested and uncongested regimes well. 

By applying the speed-volume-density relationship, several work zone capacity estimation 

methods were developed. Sarasua et al. (2006) derived the speed-flow curve for different lane 

closure types and included the base capacity as a variable in the model, which depends on lane 

closure configuration. Racha et al. (2008) used parabolic flow function and hyperbolic speed 

function to estimate work zone capacity. Most recently, Weng and Meng (2015) proposed a speed-

flow and capacity model that incorporated work zone configuration factors. Their model is based 

on a two-regime speed-flow model. The threshold separating the two regimes is pre-determined. 

Moreover, factors other than work zone, such as rainfall intensity and driver behavior, have 

been shown to have significant effect on the speed-volume-density relationship as well 

(Kockelman, 1998). Lam et al. (2013) modeled the effects of rainfall intensity on traffic speed-

volume-density relationship using the Drake Model, which is a signal-regime speed-density model 

with four parameters. Their model explained the relationship between volume and rainfall intensity 

by incorporating the free-flow speed in a function of rainfall intensity, in Drake Model. The results 

shows that capacity on urban roads decrease as rainfall intensity increases. Similar to rainfall 

intensity, work zones tend to cause reduced free-flow speed and capacity. In order to model the 

effects of work zone on traffic speed-volume-density relationship, the free-flow speed in a function 

of work zone characteristics is incorporated in a five-parameter logistic speed-density model. 

Accordingly, a work zone capacity estimation method is developed in this study.   
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In practice, spreadsheet-based traffic analysis is widely used to analyze the impact of work 

zones. Based on a survey on state department of transportations (DOTs), HCS, QuickZone and 

QUEWZ are the commonly used software packages to estimate work zone capacity (Benekohal et 

al., 2003).   

 In summary, the impact of work zone on capacity has not been investigated based on 

speed-density model. Consequently, a capacity estimation and prediction method is proposed 

based on the relationship between free-flow speed and work zone characteristics and the speed-

density model. Moreover, the existing work zone travel time estimation method are based on probe 

vehicle data. Since the probe vehicle data may not always available, a travel time estimation 

method based on radar sensor data is proposed by considering the impact of work zone on speed-

density-volume relationship.  
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CHAPTER 3. ESTIMATE FREEWAY CORRIDOR-LEVEL 

TRAVEL TIME AND ITS RELIABILITY  

 

This chapter presents a method to estimate travel times based on data collected from 

roadside sensors, considering spatially correlated traffic conditions. This chapter is organized as 

follows. Section 3.1 introduces the background of the study. Section 3.2 describes the probe vehicle 

data and radar sensor data. The travel time and its reliability estimation method is described in 

section 3.3. The discussion of the model results and summary of the findings are presented in Section 

3.4 and Section 3.5, respectively. 

3.1 Introduction 

Travel time and its reliability are intuitive system performance measures for freeway traffic 

operations. Thus, providing travelers with accurate travel time and reliability information has 

gained paramount importance. In particular, travelers are interested in origin-destination travel 

time reliability for better planning of their trips.  

Travel times can be measured directly from probe vehicles and Automatic Vehicle 

Identification (AVI). However, these techniques are usually either very expensive or require high 

rate of public participation (Turner, 1996). Alternatively, travel time can be estimated from 

roadside sensors or loop detectors. Most metropolitan areas in the United States have such sensors 

installed on their freeway systems, providing a reliable source of traffic data over a wide region. 

Therefore, estimating travel time based on roadside or in-pavement sensor is cost effective and can 

be widely applied. Since the roadside radar sensor and loop detector provide point measurements, 

it is hard to accurately estimate the link-level travel time, which depends on the space mean speed.  
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As mentioned in the literature review, some researchers used vertical-queuing-based travel time 

models to circumvent this issue (e.g.,  Lei et al., 2015; Nie and Zhang, 2005). However, point-

queue–based models ignore the spillback from a downstream bottleneck. In this study, link- and 

corridor-level travel times are estimated based on data collected from roadside radar sensors, 

considering spatially correlated traffic conditions to deal with the spillback from a downstream 

bottleneck. 

Travel time variability comes from various sources, which can be categorized into three 

categorized: regular condition-dependent variations (e.g. day-to-day variation), irregular 

condition-dependent variations (e.g. incidents), and random variations (Wong and Sussman, 

1973). For irregular variations, such as incidents, it is hard to predict their occurrence location and 

time. Therefore, it is hard to predict traveler from it by adjust their departure time. Alternatively, 

with known regular condition-dependent variations, travelers may be able to adjust their departure 

time or route to arrive on time at their destinations. 

3.2 Data Description 

Two independent data sources are used in this study to examine travel time and its 

reliability at the link and corridor levels—probe vehicle data and radar sensor data. The speed and 

volume data collected by radar sensors at fixed locations are used to estimate travel time and its 

distribution. The probe vehicle travel time data are used as the ground truth to verify the accuracy 

of travel times estimated from roadside sensor data.  

 

3.2.1 Probe Vehicle Data 

The probe vehicle travel time data used in this study is provided by INRIX, a commercial 

company that collects real-time traffic data from in-vehicle transponders on commercial vehicles 
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and cell phones in passenger cars. In the Des Moines metropolitan area INRIX probe vehicle 

network covers all of the highway and arterial networks. In this study, the probe vehicle travel 

time data are queried from Regional Integrated Transportation Information System (RITIS), which 

archives INRIX probe vehicle data at 1-minute aggregation intervals. This dataset provides time-

stamped segment-based speeds, travel times, historical average speed, free flow speed, and 

confidence scores. As stated in the INRIX Interface Guide (2014), the record represents real-time 

data only when the confidence score equals 30; otherwise the value is estimated from historical 

data. Consequently, the travel times used in this study are those with the confidence score of 30.  

As the INRIX travel times are provided segment by segment, a temporally stitched 

algorithm (Chase et al., 2012) is adopted to generate probe vehicles at 1-minute time intervals. The 

temporally stitched algorithm is intended to simulate the experienced travel time of a probe vehicle 

traveling along the corridor. In this study, the probe vehicle travel times are used as the ground 

truth. 

 

3.2.2 Radar Sensor Data 

The Iowa Department of Transportation (DOT) has been placing Wavetronix radar sensors 

along interstates and major highways in the state. The majority of sensors are in the metropolitan 

areas and provide valuable information for the DOT in terms of incident management, traffic 

operations, and planning. The existing Iowa DOT Wavetronix sensors cover the highway network 

in the Des Moines metropolitan area. These sensors count vehicles, by lane and classification, and 

register vehicle speeds. The aggregated data were obtained through an online data portal 

maintained by TransSuite. The data can be aggregated at different time intervals—20 seconds; 5, 

15, 30, 60 minutes; and 24 hours. In order to be consistent with the travel time data generated from 
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INRIX, the 20-second data are aggregated into 1-minute data and used to estimate travel times. 

The aggregated data obtained from TransSuite include volume,  speed, and occupancy, by lane. 

The volume is broken down by vehicle class.  

On-ramps and off-ramps are potential bottlenecks on freeways (Bertini and Malik, 2004; 

Liu and Danczyk, 2009; Newell, 1999). As a result, roadway sensors are usually placed close to 

ramps, as illustrated in Figure 3.1. In such cases, both the ramp flow and the mainline flow can be 

monitored using one side-fired radar sensor, as well as the point speeds. 

 

 
 

Figure 3.1 Sensor Locations (source: ©2015 Google) 
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The radar sensors sometimes report extreme values due to malfunction. Such abnormal 

data are identified and removed using the rules proposed by Vanajakshi (2005), as detailed in Table 

3.1.  

Table 3.1 Outlier Identification Rules for Radar Sensor Data (Vanajakshi, 2005) 

Individual Rules 
1) q > 50   Error 
2) v > 100  Error 
3) o > 90   Error 
Combination Rules 
4) v = 0, q = 0, o > 0   Error 
5) v = 0, q > 0, o > 0  Error 
6) v = 0, q > 0, o = 0  Error 
7) v > 0, q = 0, o = 0  Error 
8) v > 0, q = 0, o > 0  Error 
9) v > 0, q > 0, o = 0  Error 
10) v = 0 - 100, q = 0 - 50, o = 0 - 90   Accept 
q = volume in vehicles per minute per lane; v = speed in mph; and o = occupancy in 
percent. 
  

Since the proposed travel time estimation method uses volume and speed data during each 

time interval, the missing data are handled by the procedure shown in Figure 3.2. Basically, if a 

significant amount of data is missing on a certain day, that day is removed from the analysis. If 

data are missing only for a short time period, the data are imputed based on the data collected 

during the same time period on other day, which has the most similar pattern of the density time 

series as the target day.  
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Notation: N is the number of missing values in this interval; 
                ∆t is the data aggregation level; 
                D is density; 
                V is volume; and S is speed. 

 

Figure 3.2 Flow Chart for Handling Missing Data 
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The 1-minute interval data from 7:00 a.m. to 9:30 a.m. on weekdays from December 1, 

2013, to December 1, 2014, are used in this study. After the outliers are removed and the selected 

missing data are replaced, the availability of radar sensor data and real-time INRIX data is shown 

in Figure 3.3. To validate the proposed model against INRIX travel times, data need to be available 

from both sources. The plot between the black lines indicates the data in April 2014, when both 

the INRIX and sensor data are available on most days for all links. The inconsistency in missing 

data of INRIX and sensor data can cause the difference between model-based travel time and 

INRIX travel time reliability indices.  

 

 
Figure 3.3 Availability of INRIX and Sensor Data 
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3.3 Methodology 

3.3.1 Spatial Correlation of Link Travel Times 

In order to examine the spatial correlation of travel times, the correlation coefficient is 

computed to represent the relation between link travel times. Eq. 3.1 describes the cross-correlation 

between travel times of different links: 

��,� = ∑ ���	
��
��	
������ ����         (3.1) 

where, 

 �� and �� are the travel times of two different links; 

�� and �� are the mean of �� and ��, respectively;  

�� and �� are the standard deviation of �� and ��, respectively; and 

n is number of observations. 

 
Historic travel time data collected during work days in 2014 on I-235 in Des Moines are 

used to establish correlation between links. A heat map of correlations between the links of the I-

235 corridor (consisting of 19 segments) is shown in Figure 3.4.  

 
Figure 3.4 Heat Map of Correlations between Links of the I-235 Corridor 
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Significant correlations among link travel times indicate that the links along the corridor 

should not be considered as independent when examining corridor level travel time reliability. As 

expected, the correlations between a link and its adjacent upstream or downstream links are 

generally higher than the correlations between two links that are far apart. This finding is consistent 

with previous studies (e.g. Park and Rilett 1999, Zou et al. 2014). For example, Zou et al. (2014) 

also pointed out that a decreasing trend of cross-correlation value between two links can be 

observed as the distance between two links increases. 

 

3.3.2 Travel Time Estimation 

Consider a corridor with N potential bottlenecks. Assume that each bottleneck (i.e., sensor 

location) is a node and the road segment between these nodes is represented by a link with 

homogeneous capacity. Denote node 1 as the start point and node N as the last node. The segment 

between node M and node M+1 is denoted as link M. Figure 3.5 illustrates the node-link 

representation for part of the corridor, from node M to node M+3. An on-ramp or off-ramp might 

be connected to a node. The on-ramp or off-ramp is denoted as “ramp of M”. For example, in 

Figure 3.5 the on-ramp that is connected to node M+1 is denoted as “ramp of M+1.”  

 

 
Figure 3.5 Node-link Representation  
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In order to construct a numerically tractable model for computing corridor-level travel 

time, the first-in, first-out property is assumed to ensure that any vehicles that enter the link first 

would leave the link first (Lei et al., 2015). In addition, traffic breakdowns can be detected when 

speed drops significantly (say, 10 mph) and the low speed sustains for a long period (e.g., 15 

minutes) (Dong and Mahmassani, 2009). Considering the spatial correlation between links, three 

possible conditions might occur when estimating travel time of link M. Under each condition, a 

travel time calculation method is proposed. 

The first condition is when no breakdown occurs on link M and link M+1.The travel time 

of link M at time t can be estimated based on the length of link and the average of speeds measured 

at two ends of the link, as follows.   

�����, �� =  ∗"�#�$�#,%�&$�#&�,%�      (3.2) 

where,  

D[M] is length of link M; and 

S[M] and S[M+1] are speeds measured at node M and M+1 at time t, respectively. 

The second condition is when the breakdown occurs at bottleneck M+1, causing congestion 

on link M. The travel time of link M at time t is calculated as follows. Assuming vehicles in the 

platoon are traveling at the same speed, the spacing between two vehicles in the platoon on link M 

can be calculated as  

'()*+��, �� = ,- + '�� + 1, �� ∗ 0      (3.3) 

where,  

d0 is the initial space between vehicles; 
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τ is the reaction time; and  

S[M+1] is the speed measured at node M+1 at time t. 

The number of vehicles on link M at time t can be computed as  

���, �� = ���, � − 1� + �2��, � − 1� − 2�� + 1, � − 1� + 3��, � − 1� + 3�� + 1, � − 1�� ∗��4%56789 (3.4) 

where,  

��4%56789 is the length of the time intervals;  

���, � − 1� is the number of vehicle on link M at time t-1;  

F[M, t-1] and F[M+1, t-1] are the flow rates measured at node M and M+1 at time t-1, 

respectively; and  

R[M, t-1] and R[M+1, t-1] are the ramp flow rates measured at node M and node M+1 at time t-

1, respectively. The on-ramp flow rates are positive. The off-ramp flow rates are negative.  

Assuming that the increment of vehicles during the period adds to the queue, the number 

of vehicles in the queue (or queue size) can be computed as 

:��, �� = �2��, �� − 2�� + 1, �� + 3��, �� + 3�� + 1, ��� ∗ �� + ���, ��   (3.5) 
 

where,  

�� is the free flow travel time on link M. 

 
The queue length is  
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;< = :��, �� ∗ �;= + '()*+��, ���        (3.6) 

where,  

;= is the average vehicle length. 

The deceleration distance can be calculated, for vehicles entering link M at the speed of 

S[M] and needing to decelerate before joining the slow moving traffic traveling at the speed of 

S[M+1].  

>? = $@�#,%�	$@�#&�,%� 8           (3.7) 

where,  

a is the deceleration rate. 

The sum of free flow travel distance, deceleration distance, and queue length equals the 

length of link M; that is,  

>��� = >$ + '��, �� ∗ �� + ;<       (3.8) 
 

The free flow travel time t1 can be solved for as follows: 

�� = "�#�	"A	��#,%�∗�BC&$D8�5�#,%���E�#,%�	E�#&�,%�&F�#,%�&F�#&�,%��∗�BC&$D8�5�#,%��&$�#,%�    (3.9) 

 

As a result, the travel time of link M at time t can be calculated: 

 �� ��, �� = �� + BG$�#&�,%� + $�#,%�	$�#&�,%�8            (3.10) 

 

The third condition is when the breakdown occurs at bottleneck M+2 at time t. Under this 

condition, if the queue spills back onto link M, the travel time of link M would be impacted by the 
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breakdown; otherwise, the travel time of link M can be estimated in the same fashion as when no 

breakdown occurs.  

Similar to the second condition, the average spacing between two vehicles in the platoon, 

number of vehicles, queue size, and deceleration distance on link M+1 can be derived by changing 

M and M+1 in Eq. 3.3 to Eq. 3.7 to M+1 and M+2, respectively. Therefore, the following situations 

are taken into consideration. 

When the queue length is longer than the length of link M+1, the travel time is calculated 

as follows: 

��H��, �� = "�#�&"�#&��	BG	"A$�#,%� + BG	"�#&��$�#& ,%� + $�#,%�	$�#& ,%�8     (3.11) 

 

When the queue length is shorter than the distance of link M+1, but the queue length plus 

deceleration distance is longer than the distance of link M+1, the travel time can be calculated as 

follows: 

��H��, �� = "�#�&"�#&��	BG	"A$�#,%� + $�#,%�	$�#& ,%�8 ∗ "A&BG	"�#&��"I           (3.12) 

 

If the sum of the queue length and deceleration distance are shorter than the length of link 

M+1 (i.e., the breakdown at bottleneck M+2 has no impact on travel time on link M), the travel 

time estimation method for link M is the same as the method described under the first condition. 

Furthermore, empirical studies have documented that flow breakdown does not necessarily 

occur at the same prevailing flow level, and thus pre-breakdown flow rate (i.e., the flow rate 

observed immediately before traffic breaks down) has been treated as a random variable in order 

to model the probabilistic nature of traffic breakdown (Brilon et al., 2005; Dong and Mahmassani, 

2009). This results in a probability of breakdown occurring at a given flow (demand) level. The 

probability distribution function of the pre-breakdown flow rates has been calibrated to follow the 
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Weibull distribution based on data samples from freeway sections in California, USA (Dong and 

Mahmassani, 2009; Kim et al., 2010) and Germany (Brilon et al., 2005). The pre-breakdown flow 

distribution function expresses the probability that traffic breaks down in the next time interval 

(for a given time discretization).  

J��, �� = 1 − +	�K�L,M�N �I
     (3.13) 

where, 

P[M,t] is the pre-breakdown probability at node M at time t; 

s is the shape parameter, σ is the scale parameter; and  

F[M,t] is the flow rate measured at node M at time t. 

Thus, the expected travel time of link M is  �O��, �� = P�1 − J��, ����1 − J�� + 1, ��� + �1 − J��, ���J�� + 1, ��Q ∗ �����, �� +J��, ��
1 − J�� + 1, ��� ∗ �� ��, �� + J��, ��J�� + 1, �� ∗ ��H��, ��              (3.14) 
 

where,  

P[M,t] and P[M+1,t] are the pre-breakdown probabilities at nodes M and M+1 at time t, 

respectively. 

Consequently, the vehicle that departs from node M at time t would arrive at node M+1 at 

time t+TE[M]. The travel time estimation procedure presented above is repeated to estimate travel 

time on link M+1 using measurements collected at time t+TE[M]. The corridor-level travel time 

from bottleneck 1 to bottleneck N can be calculated as the sum of the time-dependent link travel 

times: 
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��R66�SR6 = ∑ �O�T�U�V�       (3.15) 
 

The proposed model detects different spillback conditions and uses the queue length and 

deceleration distance to calculate the delay at the bottleneck with queue spillback. However, there 

is a limitation of the proposed model. If the breakdown occurs between two sensors and the queue 

does not propagate to a sensor located upstream of the bottleneck, the model would not be able to 

detect the breakdown. 

In order to evaluate the performance of the proposed model, the link travel time estimation 

method proposed by Vanajakshi et al. (2009) is compared with the proposed method. In 

Vanajakshi et al. (2009) the travel time is calculated as follows: 

�O��, �� = W"�#� PX�#,%	��&X�#,%�QE�#&�,%�   2�� + 1, �� > 500 ]+ℎ/ℎ`/ab
 ∗"�#�$�#,%�&$�#&�,%�                            c�ℎ+`dTe+     (3.16) 

 

where, 

K[M,t-1] and K[M,t] are the density measured at node M at time t-1 and t, respectively. 

In addition, a naïve approach is also tested to estimate link travel time solely based on the 

point measurement of speeds, that is, using Eq. 3.2 to calculate link travel time. The corridor travel 

time is simply the summation of the link travel times. 

 

3.3.3 Travel Time Distribution 

To better understand travel time variability, travel times are fitted to specific distribution 

functions (Caceres et al., 2016). Four statistical distributions are considered to fit the data, as 
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shown in Table 3.2. The goodness-of-fit is used to validate the assumptions of these statistical 

distribution. 

Table 3.2 Plausible Function Forms of Travel Time Distribution 

 Probability density function Parameters Mean Mode 

Gamma 
 

k > 0 − shape  
θ > 0 – scale  

, 
for  

Weibull 
 

k > 0 − shape  
θ > 0 – scale 

 

, 
for  

Lognormal 
 

σ2 > 0 – shape 

− log 
scale 
 

 

 

Normal 
 

σ2 > 0 – 

variance 

−mean 
 

μ μ 

f�∙�− Gamma function 

Based on the travel time distribution, various reliability measures can be derived, including 

the standard deviation of travel times, 95th percentile travel times, buffer time index, and planning 

time index. The planning time index is defined as the ratio of the 95th percentile travel time to the 

free flow travel time. The buffer time index is the ratio of buffer time (i.e., the difference between 

95th percentile travel time and the average travel time) to average travel time. 

3.4 Results 

In this section, the proposed methodology is applied to estimate the travel time of part of 

I-235, as shown in Figure 3.6. This six-lane freeway section (three lanes in each direction) located 

in West Des Moines is one of the busiest freeways in Iowa, USA. The locations of roadway sensors 
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are shown in Figure 3.6. All the sensors are located in the merging/diverging areas, where the 

sensors can collect data from the ramps and the mainline.  

 
Figure 3.6 Study Corridor and Sensor Locations (source: ©2015 Google) 

 

3.4.1 Travel Time Calculation 

Travel times are estimated using the spatial-correlated travel time estimation (SCTTE) 

model , Vanajakshi et al. (2009) model, naïve-approach, and INRIX travel time (INRIX-TT). Since 

congestion generally occurred during the morning peak on weekdays at the study site, the travel 

times are estimated for each 1-minute interval from 7:00 a.m. to 9:30 a.m. with one month of data 

from April 2014. Figure 3.7 compares the time-dependent travel times estimated by different 

methods on example days. The SCTTE model-based travel time index estimation followed the 

pattern of the INRIX travel time index well, at both the link and corridor levels. The naïve-

approach and Vanajakshi et al. (2009) model, however, underestimate the delay in terms of 

congestion duration and severity. Similar patterns are observed for other days as well. 
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a) Link 1 (April 4th , 2014 [Dry]) 

  
b) Link 2 (April 4th , 2014 [Dry]) 

Figure 3.7 Comparison of Model-based Travel Time Index, Vanajakshi et al. (2009) Travel 

Time Index, Naïve-approach Based Travel Time Index and INRIX Travel Time Index 
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c) Corridor (April 4th , 2014 [Dry]) 

  
d) Link 1 (April 27th, 2014 [Rain]) 

Figure 3.8 Comparison of Model-based Travel Time Index, Vanajakshi et al. (2009) Travel 

Time Index, Naïve-approach Based Travel Time Index and INRIX Travel Time Index 

(Continued) 
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e) Link 2 (April 27th, 2014 [Rain]) 

  
f) Corridor (April 27th, 2014 [Rain]) 

Figure 3.9 Comparison of Model-based Travel Time Index, Vanajakshi et al. (2009) Travel 

Time Index, Naïve-approach Based Travel Time Index and INRIX Travel Time Index 

(Continued) 
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To show shockwave, the speed contour during the congested period of an example day, 

from 7:20 a.m. to 8:30 a.m., is plotted in Figure 3.8. It can be seen that the speed drops started at 

sensor 3 and propagated to sensor 1. At sensor 4 the traffic is free flowing.  

 
Figure 3.10 Speed Contour of Sensors 

 

Performance measures, including mean square error (MSE) and mean absolute percentage 

error (MAPE), are calculated based on data of April 2014, as follows.  

�'h = ∑�5?%�i8%5S	8�%j89�@
4jik56 Rl Rk?5678%�R4?        (3.17) 
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�mJh = ∑|oIM�pqMorsqtMuqv|qtMuqv4jik56 Rl Rk?5678%�R4? ∗ 100%     (3.18) 

Table 3.3 compares the values of the performance measures of all the methods at both the 

link and corridor levels. As it can be seen, the proposed method outperforms other methods. 

  

Table 3.3 Performance Measures of Different Methods 

  
Corridor Link 1 Link 2 

MSE MAPE MSE MAPE MSE MAPE 
SCTTE model 0.029 0.661 0.017 0.541 0.087 1.557 
Vanajakshi et al. (2009) model 0.188 7.698 0.243 12.742 0.233 9.191 
Naïve approach 0.234 12.155 0.365 13.451 0.273 13.150 
 

Table 3.4 shows the impact of data aggregation on the performance of the proposed model. 

When the aggregation level increases, the error of the proposed model increases. One of major 

reason is that the impact of spacing function (Eq. 3.3) on travel time estimation is decreasing with 

aggregation level increases. Moreover, the differences in errors of three methods become less 

noticeable at larger aggregation levels. For example, with 1-minute aggregation level data, the 

proposed model is significantly better than the other two; with 5-minute aggregation level data, 

the proposed model performs similarly to the Vanajakshi et al. (2009) model. 

 

3.4.2 Travel Time Distribution 

The maximum likelihood estimation is used to fit the distributions. To evaluate the 

goodness of fit, the log-likelihood value of each distribution is summarized in Table 3.5. Since the 

lognormal distribution has the largest log-likelihood value, it was selected as the best distribution 

to fit the travel time data. 
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Table 3.4 Performance Measure of Different Data Aggregation Level 

 
Corridor Link 1 Link 2 

SCTTE 
model 

Naïve 
Vanajakshi 
et al. model 

SCTTE 
model 

Naïve 
Vanajakshi 
et al. model 

SCTTE 
model 

Naïve 
Vanajakshi 
et al. model 

MSE 

1 min 0.03 0.19 0.21 0.02 0.36 0.26 0.09 0.32 0.23 
5 min 0.18 0.22 0.20 0.14 0.24 0.12 0.23 0.26 0.23 
10 min 0.23 0.14 0.21 0.33 0.40 0.31 0.30 0.34 0.30 
15 min 0.24 0.25 0.25 0.23 0.24 0.22 0.30 0.31 0.35 

MAPE 

1 min 0.66 7.70 7.15 0.54 13.45 8.58 1.56 9.45 9.39 
5 min 9.32 11.01 9.45 7.73 12.71 6.71 11.13 13.96 9.24 
10 min 10.74 4.81 8.24 12.65 16.08 12.49 11.40 14.03 12.07 
15 min 17.42 18.39 18.39 11.30 12.78 11.44 14.27 15.14 15.47 

39 
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Table 3.5 Model Selection Based on Log-likelihood 

 Weibull Gamma Lognormal Normal 

INRIX-TT 
Link 1 -8992.79 -8329.30 -7744.00 -10314.31 
Link 2 -7331.44 -6568.86 -5617.30 -9385.41 

Corridor -13409.20 -12715.01 -12028.62 -14849.25 

SCTTE -TT 
Link 1 -1576.00 -1465.62 -1313.62 -1968.53 
Link 2 -1309.03 -1163.50 -1093.47 -1393.16 

Corridor -2460.34 -2320.34 -2206.80 -2684.20 

Naïve-TT 
Link 1 -1790.85 -1240.25 -1103.03 -1853.86 
Link 2 -1461.62 -1432.31 -1340.04 -1472.71 

Corridor -2414.40 -2346.73 -2299.48 -2488.56 

Vanajakshi et al. model 
Link 1 -1611.58 -1462.37 -1300.58 -1885.87 
Link 2 -1378.53 -1154.90 -1080.50 -1487.47 

Corridor -2085.23 -2026.78 -1985.98 -2149.27 
 

The weekday data for the peak 15-minute travel times (7:45 a.m. to 8:00 a.m.) from 

December 1, 2013, to December 1, 2014, were used to estimate the travel time distribution. 

After removing the outliers, the correlation between link 1 and link 2 of the INRIX data and 

model-based travel time is 0.83 and 0.97, respectively. The proposed SCTTE-TT method 

slightly overestimated the correlation and the travel time variability. Meanwhile, naïve-

approach and Vanajakshi et al. model underestimated the travel time variability. The travel 

time distributions are shown in Figure 3.9. The SCTTE-TT distribution captured the tendency 

of the INRIX travel time distribution well.  
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a) Lognormal Distribution of Link 1 Travel Times 

 

 
b) Lognormal Distribution of Link 2 Travel Times 

Figure 3.11 Probability Density Distributions of Peak 15-minute Travel Times 
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c) Lognormal Distribution of Corridor Travel Times 

 
Figure 3.12 Probability Density Distributions of Peak 15-minute Travel Times 

(Continued) 

 

Figure 3.10 plots the cumulative distribution functions of the lognormal travel time 

distributions estimated based on the INRIX data, naïve-approach, Vanajakshi et al. model and 

proposed model.  
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a) Cumulative Distribution of Link 1 Travel Times 

 
b) Cumulative Distribution of Link 2 Travel Times 

Figure 3.13 Cumulative Density Distributions of Peak 15-minute Travel Times 
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c) Cumulative Distribution of Corridor Travel Times 

Figure 3.14 Cumulative Density Distributions of Peak 15-minute Travel Times 

(Continued) 

 

Table 3.6 compares the travel time reliability indices of model-based travel time 

estimates and INRIX travel times. At corridor level, all SCTTE-TT reliability indices are 

within 10% error range, compared to the ones calculated based on INRIX travel times. 

However, all reliability indices of naïve-TT and Vanajakshi et al. model-TT have error larger 

than 10%.  At the link level, although the means and standard deviations of SCTTE-TT s are 

close to those of the INRIX travel times, the 95th percentile travel time, planning time index, 

buffer time, and buffer time index show fairly significant discrepancies, up to 70%.  
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Table 3.6 The Variance of Reliability Indices of INRIX Travel Time and SCTTE 

Model-based Travel Time 

  
Mean 
(min) 

Standard 
Deviation 

95th 
Percentile 

(min) 

Planning 
Time 
Index 

Buffer 
Time 
(min) 

Buffer 
Time 
Index 

INRIX-TT 

Link 1 1.14 0.51 1.88 2.04 0.74 0.65 

Link 2 1.51 0.74 2.56 1.95 1.05 0.69 

Corridor 2.55 1.20 4.90 2.21 2.35 0.92 

SCTTE-TT 

Link 1 1.26 0.78 2.52 2.74 1.26 1.00 

Link 2 1.47 0.59 3.00 2.29 1.53 1.03 

Corridor 2.74 1.36 5.32 2.40 2.58 0.94 

Naïve-TT 

Link 1 0.86 0.28 1.37 1.49 0.51 0.59 

Link 2 1.21 0.41 1.92 1.47 0.71 0.59 

Corridor 2.13 0.74 3.55 1.60 1.42 0.67 

Vanajakshi 
et al. 

model-TT 

Link 1 0.88 0.34 1.48 1.61 0.60 0.68 

Link 2 1.32 0.51 2.24 1.71 0.92 0.69 

Corridor 2.31 0.81 3.78 1.70 1.47 0.64 
 

The errors in the proposed travel time estimation model could be attributed to several 

factors. First, the first-in, first-out assumption does not take lane change behavior into 

consideration in the calculation. As a result, the number of vehicles approaching the bottleneck 

might be underestimated or overestimated by the model. Second, missing values from the radar 

sensor data might also cause errors in estimating travel times, thus causing errors in computing 

travel time reliability indices.  

The proposed travel time estimation model performs better than the other two methods. 

One of the main reason is that the proposed method considers the impact of queue length under 

different traffic conditions on travel time. However, there are some limitations of the proposed 

method. First, the congestion occurred between two sensors could only be detected when the 

queue built up to the upstream sensor. Thus, the accuracy of the proposed method may vary 
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with the distance between sensors. Second, the proposed method requires the traffic data from 

downstream links to estimate the travel time of the target link. Because of sensor errors, the 

traffic data for these links may not always available for the same time point. By considering 

correlations among multiple links, the accuracy of the proposed model will increase. 

3.5 Summary 

This chapter proposed a travel time estimation model that considers the spatially 

correlated traffic conditions. Link- and corridor-level travel time distributions were estimated 

using probe vehicle data and roadside radar sensor data. Corridor-level travel time reliability 

measures were extracted from the travel time distributions. Compared to the probe vehicle data 

from INRIX, the proposed travel time estimation model captured the patterns of travel time 

and its distribution well. Moreover, the inconsistency of the missing data of INRIX and sensor 

data can randomly cause the travel time reliability be overestimated/underestimated by the 

SCTTE-TT method.  

The proposed model provides a method to assess corridor-level travel time and its 

distribution using the point measurements collected from the side-fired radar sensors. In order 

to estimate travel times accurately under congested condition, Yang et al. (2016) proposed a 

travel time estimation model which is integrated with car-following model. Consequently, it is 

desirable to consider the distinct car-following behavior of passenger cars and heavy vehicles 

in the travel time reliability analysis.  In the next chapter, the impact of car-following behavior 

of passenger cars and heavy vehicle on travel time reliability is investigated. 
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CHAPTER 4. ESTIMATE TRAVEL TIME RELIABILITY 

MEASURES BY CONSIDERING THE STOCHASTIC 

NATURE OF DRIVER BEHAVIOR PARAMETERS  

This chapter presents a method to estimate corridor travel time reliability measures by 

incorporating stochastic standstill distance and time headway parameters in car-following 

model. The chapter is organized as follows. Section 4.1 introduces the background of the study. 

The corridor travel time reliability measure estimation model, which incorporated stochastic 

standstill distance and time headway parameters in FRESIM car following model, is described 

in section 4.2. The discussion of the results and summary of the findings are presented in 

Section 4.3 and Section 4.4, respectively. 

4.1 Introduction 

Car following behavior, which describes the relationship between a following vehicle 

and a leading vehicle, plays an important role in determining the freeway capacity (Cambridge 

Systematics and Texas Transportation Institute, 2005). Meanwhile, capacity of freeways has 

been widely considered as an important parameter in delay-volume function to estimate travel 

time. Stochastic nature of capacity is influenced by weather, traffic composition and stochastic 

travel behavior (Neuhold and Fellendorf, 2014).  As a result, it is important to investigate the 

impact of the stochastic driver behavior on travel time reliability.   

Generally, standstill distance and following time headway are the key parameters of 

car-following models. Historical data shows that the time headway and standstill distance 

follow probabilistic distributions. However, existing microsimulation software usually 
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considers the driving behavior parameters as deterministic values. In order to better reflect the 

dynamic nature of the transportation system, the stochastic driving behavior parameters are 

incorporated into car-following model to estimate travel time reliability measures. 

In this chapter, the INRIX travel time data and Wavetronix data (e.g. speed, flow and 

occupancy) are collected during 2015, which are collected during 2014 in Chapter 3, is used 

to estimate travel time reliability. 

4.2 Methodology 

This section presents a modeling approach to generate travel time reliability measures 

using car-following models with stochastic headway and standstill parameters. The modeling 

approach consists of three parts. First, a two-component travel time distribution is proposed to 

derive reliability measures. Second, the mathematical formulation of travel time under 

congested state is derived from Pipes Car-following model. Third, Monte Carlo simulation 

method is used to generate travel times under congested state considering stochastic time 

headways and standstill distances. 

 

4.2.1 Two-component travel time distribution 

Multi-state models have been proposed to fit travel time distributions (Guo et al., 2010; 

Park et al., 2011), which contains multiple component distributions. Normal, gamma, and 

lognormal distributions have been considered as component distributions of the multi-state 

models. Guo et al. (2010) proposed a two-component travel time distribution model containing 

free-flow state and congested state. Mixture normal, mixture lognormal, or mixture Weibull 

distributions can be used to describe the two-component travel time distribution. However, 
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deriving travel time reliability measures from existing two-component travel time distribution 

is more sophisticated than single-component travel time distribution. Since the variations of 

free-flow travel times are generally small, the reliability measures are mostly determined by 

the congested travel times. Therefore, to simplify the calculation of reliability measures, the 

two component model is simplified by ignoring the free-flow travel time variation and treating 

the travel time in free-flow state as a Dirac delta distribution. 

Based on the travel time data collected on I-235 in Des Moines, IA, two-component 

travel time distribution is shown in Figure 4.1. In Figure 4.1(a), the probability density function 

(PDF) of travel times can be viewed as a mixture Gaussian distribution consisting of a free 

flow travel time distribution and a congested travel time distribution. As the travel time 

variation is small under free flow conditions, the PDF of free-flow state can be simplified as a 

Dirac delta distribution, as show in Figure 4.1(b). 

 
a) Mixture Gaussian Distribution 

Figure 4.1 Two-component Travel Time Model 
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b) Simplified Distribution 

 
Figure 4.2 Two-component Travel Time Model (Continued) 

 

To calculate travel time reliability measures, such as planning index and buffer time, 

the 95th percentile and mean travel times are needed. The cumulative density function (CDF) 

of the simplified two component travel time distribution can be written as 

                x�y� = zxx�y� + �{ − z�x|�y�                                             (4.1) 

where,  

2E��� is cumulative density functions of Dirac delta distribution; 

2}��� is cumulative density functions of congested state. 

~ is the mixture proportion. 
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For Dirac delta distribution, the cumulative distribution function is Heaviside step 

function as follows: 

2E��� = �1    , � ≥ �-0    , � < �-                                     (4.2) 

where,  

�- is the mean free flow travel time. 

As a result, the 95th percentile travel time can be calculated as follows: 

���� = �2}	� �-.��	��	� � , 0 ≤  ~ < 0.95�-,      ~ ≥ 0.95                                       (4.3) 

Where, 

���� is the 95th percentile travel time 

2}	��∙� is the inverse CDF of congested travel times  

The mean travel time of the two-component model can be calculated as follows: 

� = ~ ∗ �- + �1 − ~��}                                                       (4.4) 

Where, 

� is the mean travel time 

�} is the mean travel time of the congested state. 
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Based on the 95th percentile travel time, free-flow travel time and mean travel time, 

travel time reliability measures can be derived, including: 

• Planning time – The 95th percentile travel time. 

• Planning time index – The ratio of 95th percentile travel time to ideal or free-flow travel 

time. 

Ja)bbTb� �T�+ Tb,+� = ����%�                                                    �4.5� 
• Buffer time – The difference between the 95th percentile travel time and the mean travel 

time. 

����+` �T�+ = ���� − �                                                                �4.6� 
• Buffer index – The size of the buffer as a percentage of the average, calculated as the 95th 

percentile travel time minus the average, divided by the average. 

����+` Tb,+� = ����	

                                                          (4.7) 

 

The travel time reliability estimation framework is shown in Figure 4.2. First, the real 

world density data is clustered into free-flow state and congested state based on the upper value 

of level of service D in Highway Capacity Manual 2016 (HCM 2016), that is, the congested 

state is defined as when density is larger than 26 pc/mi/ln. Accordingly, ~ and free flow travel 

time can be calculated as the ratio of free-flow state occurrence during the data collection 

period. Second, the stochastic car-following model is used to generate travel time distribution 

under congested state. Finally, based on the simplified two-component travel time distribution, 

the reliability measure can be calculated.   
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Figure 4.3 Corridor-level Travel Time Reliability Measure Estimation Framework  

 

4.2.2 Stochastic Headways and Standstill Distances 

The time headways and standstill distances were collected from various freeway 

segments throughout Iowa. In order to collect the time headway data, side-fired radar sensors 

were installed temporarily with video cameras at several locations. The radar sensors collect 

the vehicle length, speed, lane detected, and time detected for each vehicle. Vehicle 
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classification is determined based on the vehicle length. Vehicles longer than 40 feet is 

classified as truck. Other vehicles are considered as cars. The time headway is calculated as 

the time difference between two vehicle arrivals at the same location. According to the research 

of Houchin et al. (2015), the standstill distances are measured from the videos when the 

vehicles stopped in queue on freeway. In particular, videos from Iowa Department of 

Transportation closed-circuit cameras (CCTV) when stop-and-go traffic occurred were 

downloaded after the fact. Screen captures of the video were taken when vehicles were stopped 

within the frame. Those stopped vehicles were identified and the distances between them are 

measured using a Photoshop tool that is capable of measuring distances on plane distorted by 

perspective. Painted lane lines (10 feet long) were used as a control measurement on which the 

software based the rest of its measurements on. The length of the lane lines was confirmed 

using Google Earth. Thus, the standstill distances were measured between every pair of 

stopped vehicles.  

Four statistical distributions are considered to fit the time headway and standstill 

distance data, as shown in Table 4.1. In order to determine how well the distributions fit the 

observations, log-likelihood values are compared.   

The likelihood ratio test was used to compare the vehicle type-specific models (i.e. car 

following car, car following truck, truck following car, and truck following truck) with the 

overall model. The test statistic, which is chi-square distributed, is shown below in Eq. 4.8.  

� = −2�;;F − ;;��                                          (4.8) 

where: 

;;F is the log likelihood value for the overall model; and 
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;;� is the sum of the log likelihood values for vehicle type-specific models.  

 

Table 4.1 Plausible Function Forms of Time Headway and Standstill Distance 

Distributions 

 Probability density function Parameters Mean Mode 

Gamma (��� = ��
Γ   �~� ��	�+	�� 

α > 0 − shape β > 0 – rate 

~� 
�	�� , 

for ~ ≥ 1 

Weibull 
     

k > 0 − shape 
θ > 0 – scale 

 

, 
for  

Lognormal 

 

σ2 > 0 – shape μ ∊ R− log scale 
 

 

 

Normal      

σ2 > 0 – 

variance  μ ∊ R −mean 
 

μ μ 

f�∙�− Gamma function 

4.2.3 Steady-State Car-Following Behavior 

The steady-state car-following models describe the relationship between the desired 

speed of following vehicles, the speed of leading vehicles and the spacing between the lead 

and the following vehicles. The macroscopic speed-density relationship can be derived from 

the steady-state car-following behavior, as described in this section. 
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4.2.3.1 FRESIM car-following behavior 

Pitt car-following model, developed by the University of Pittsburgh, is implemented in 

FRESIM (Halati et al., 1997).  The basic model is described as follows 

'��� = '���� + *H������� +  *H∆����                                                     (4.9) 

where, 

'��� is the spacing between the lead vehicle m-1 and the following vehicle m (mile); 

'�[m] is the spacing when vehicles are completely stop in a queue (mile); 

cH��� is the car-following sensitivity factor of vehicle m; 

���� is the speed of the following vehicle m (mph); 

b is the calibration constant that equals to 0.1 if the speed of the following vehicle exceeds 

the speed of lead vehicle; otherwise b is 0; and  

∆���� is the difference in speeds of the lead vehicle m-1 and the following vehicle m (mph). 

 

The spacing when vehicles are completely stopped is the summation of standstill 

distance and vehicle length, as show in Eq. 4.10.   

'���� = ,���� + a7�� − 1�                                                          (4.10) 

where, 
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,���� is the standstill distance  between the lead vehicle m-1 and the following vehicle m 

(mile); and 

a7�� − 1� is the length of vehicle m-1 (mile). 

Since the steady-state assumes equal and constant speeds, the car-following model in 

FRESIM is simplified as follows: 

      '��� = '���� + *H�������                                                           (4.11) 

���� = �Tb �$�i�	$¤�i��¥�i� , �l�                                                      (4.12) 

 

In fact, the FRESIM stead-state car-following behavior can be characterized by Pipes 

model (1953) (Rakha and Crowther 2003). The speed-density relationship developed from the 

Pipes car-following model is as follows. 

¦ = 4
�	§×$©ªªª�§×∑ �¥�i��p�� , ¦ ∈ �0, �l�                                                (4.13) 

where, 

¬ is the density (veh/mile/ln);  

¦ is the speed (mph); and 

S®̄ is the average spacing, that is,  S®̄  = ∑ $¤�i��p��4 . 

Moreover, Rakha and Crowther (2003) showed that the driver sensitivity factor can be 
written as *H̄ = �°t − �§¤j±                                                     (4.14) 



www.manaraa.com

58 

 

 

where, 

²� is the roadway capacity (veh/hr/ln); 

¬� is the jam density (veh/mile); and  

�l is the free-flow speed (mph). 

The relationship between flow rate and headway and the relationship between jam 

density and congested spacing are represented by Eq. 4.15 and Eq. 4.16, respectively. 

²��� = �³q�i�                                                                           (4.15) 

¬���� = �$¤�i�                                                                         (4.16) 

where, 

ℎ8��� is the time headway  between the lead vehicle m-1 and the following vehicle m 

(hour). 

By substituting Eq. 4.15 and Eq. 4.16 into Eq. 4.14, we have 

 *H��� = ℎ8��� − $¤�i�j±                                                                      (4.17) 

4.2.3.2  INTEGRATION car-following behavior 

By combining the Pipes model and Greenshields model, Van Aerde and Rakha (1995) 

proposed a car-following model, which is implemented in INTEGRATION (M. Van Aerde & 

Assoc., 2005a, 2005b). The Van Aerde model is as follows (Rakha & Crowther, 2003). 

      '��� = )���� + 8@�i�j±	j + )H����                                                     (4.18) 
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where, 

)���� is the fixed distance headway between the lead vehicle m-1 and the following vehicle 

m (mile); 

) ��� is the first variable distance headway between the lead vehicle m-1 and the following 

vehicle m  (mile2/h); and 

)H��� is the second variable distance headway between the lead vehicle m-1 and the 

following vehicle m (h). 

The speed-density relationship can be derived 

¬ = �8�& q@u±su&8¥j                                                                    (4.19) 

The model parameters− )�, )  and )H−can be computed as follows (Demarchi, 2002) 

 )� = j±§¤jt@ �2�� − �l�                                                            (4.20) 

 ) = j±§¤jt@ ��l − ���                                                            (4.21) 

)H = �°t − j±§¤jt@                                                                   (4.22) 

where, 

�� is the speed at capacity (mph). 

By substituting Eq. 4.15 and Eq. 4.16 into Eq. 4.20, Eq. 4.21 and Eq. 4.22, the model 

parameters for each vehicle pair can be derived as follows 
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)���� = $¤�i�j±jt@ �2�� − �l�                                                     (4.23) 

 ) ��� = $¤�i�j±jt@ ��l − ���                                                     (4.24) 

)H��� = ℎ8��� − $¤�#�j±jt@                                                        (4.25) 

 

Based on Eq. 19, Eq.23, Eq.24 and Eq.25, speed is calculated as follows: 

¦ = �8ª¥j±&�́	8ª��±¶�8ª¥j±	�́&8ª��@&·8ª¥8ª@ 8ª¥ , ¦ ∈ �0, �l�                             (4.26) 

Where, 

)¸̄ is the average of )����, that is,  )¸̄ = ∑ 8��i��p��4 . 

 

4.2.3.3 VISSIM car-following behavior 

Weidemann 74 and Weidemann 99 car-following models are implemented in VISSIM, 

which belong to psychophysical or action-point models (Gao, 2008). The model was developed 

from Pipes car-following logic and considers other factors, such as the spacing at which the 

vehicle reacts to a speed difference and driver’s perception of the speed difference.  Under 

steady-state conditions  the car-following model in VISSIM reverted to the Pipes model (as 

shown in Eq. 4.12) (Rakha and Crowther 2002). 

 

4.2.4 Travel time reliability based on steady-state car-following models 

By incorporating standstill distance and time headway distributions in the above 

mentioned car-following models, travel time reliability measures can be estimated using Monte 

Carlo simulation. In each simulation run, a realization of the stochastic parameters leads to a 
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realization of the speed-density point. Collectively, the speed-density region can be estimated. 

A sufficient number of simulations can provide a good representation of the speed-density 

regions under uncertainty. Given the standstill distance and time headway distributions, the 

following procedure is implemented to estimate speed-density region through Monte Carlo 

simulation. Accordingly, the travel times in congest regime can be generated. The 95th 

percentile and mean travel time are calculate based on Eq. 5.3~5.4. The reliability measures 

are derived from Eq. 5.5~5.7. The detailed procedure is described as follows. 

 

Input:  
Free Flow Speed, uº; 
Truck percentage, P; 
Number of links = X; 
Link length, ;�, � ∈ �1, »�; 
Density distribution under congested condition for link x, ¬�, � ∈ �1, »�; 
Truncated vehicle type-specific standstill distance distributions (see Section 4.3.1.2), '� ∈�0, ¦((+` �c�b,�; 
Truncated vehicle type-specific headway distributions (see Section 4.3.1.1),  ¼ ∈ �;cd+` �c�b,, ¦((+` �c�b,� ; 
Number of simulations = Z. 
 

      For z=1 to Z,  
For x= 1 to X,  

1: Generate a set of random samples for vehicles, say M vehicles, with P percent 
of trucks. 

2: Randomly generate density values for link x from the density distribution. 
      For m=2 to M 

3: Determine the vehicle following type between the leading vehicle (m-1) and 
the following vehicle (m) in the vehicle set.  

4: According to the truncated vehicle type-specific standstill distance and 
headway distributions, generate the standstill distances and time headways 
for the vehicle pair based on the corresponding probability distributions. 

5: Calculate S½ for each vehicle pair using Eq.10 
6: FRESIM: Calculate cH for following vehicle (m) using Eq. 17. 

INTEGRATION: Calculate  a� ,  a and  aH  for the following vehicle (m) 
using Eq. 23~25. 

End For 

7: Select first n observations, where 
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   ¿Ày ∑ ℎ+),d)� ��� ≤ �T�+ Tb�+`])a  4iV  
8: FRESIM: Use Eq. 13 to calculate the speed on target link for the density 

point. 
INTEGRATION: Use Eq. 27 to calculate the speed on target link for the density 

point. 
9: Calculate travel time on target link by using link length divided by speed 

from step 8. 
End For 

10: Calculate corridor-level travel time by adding the travel times on all the links 
End For 

Output: Speed-Density Range/ Travel Times under Congested State 
 

In order to evaluate the accuracy and efficiency of the proposed framework, the 

FRESIM car-following model is used to compare with VISSIM simulation results. Note that 

logic of FRESIM and VISSIM under steady-state condition reverts to Pipes model (Rakha and 

Crowther 2002).  

 

4.2.5 Travel time reliability based on VISSIM 

The corridor-level travel time can be obtained through PTV VISSIM 7. VISSIM is 

microscopic traffic simulation software that adopts the psycho-physical car-following model 

developed by Wiedemann (PTV AG 2014). Because VISSIM can simulate the behavior of 

individual vehicles and produce diverse evaluation parameters, it has been widely used in 

transportation engineering for modeling various traffic scenarios. There are two car following 

models available in VISSIM, Wiedemann 74 and Wiedemann 99, which are used to model 

urban traffic and freeway traffic, respectively. In this study, the Wiedemann 99 car following 

model was used to estimate travel time reliability measures of freeways.  

The driver behavior parameters were calibrated by Dong et al. (2015) using locally 

collected data. Three car-following model parameters, including standstill distance (CC0), 
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headway time (CC1), and “following” variation (CC2), have been found to have a significant 

influence on traffic capacity. The traffic volume on the study corridor was balanced based on 

the method proposed by Shaw and Noyce (2014). The congested and uncongested conditions 

were simulated separately. The travel time reliability measures were calculated by sampling 

the travel times from the VISSIM output based on the percentage of the congested and 

uncongested conditions occurred in the real world. 

4.3 Results 

 

4.3.1 Time Headway and Standstill Distance Distribution 

4.3.1.1 Time headway distribution 

Figure 4.3 shows the histograms of time headways by different vehicle lead-follow type 

and for the pooled data (labeled as “Overall”). The distributions are right skewed which is 

consistent with the finding in the research of Ye and Zhang (2009). Makishita and Matsunaga 

(2008) found that the reaction time range of drivers were 61-64 years old is larger than the 

drivers were 20-54 years old. Considering the safety issue, the headway is related to reaction 

time (Brackstone and Mcdonald, 2007). Therefore, one of the possible reasons of right 

skewness of time headway distributions is that drivers in different age group has different 

reaction time range. 
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Figure 4.4 Histograms of Vehicle Type–specific and All Vehicle–type Time Headways  

 

Table 4.2 summaries the means and standard deviations of time headways. The mean 

time headways when a car is following (i.e. Car-Car and Truck-Car) are significantly different 

from the ones when a truck is following (i.e. Car-Truck and Truck-Truck). In addition, large 

standard deviations are associated with each group of observations, as well as the pooled 

dataset, indicating fairly disperse distributions.   
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Table 4.2 Summary Statistics of Time Headways 

  Overall Car-Car Car-Truck Truck-Car Truck-Truck 
Number of observations 260415 200994 22324 30467 6630 
Mean 1.90 1.80 2.40 1.84 2.41 
Standard deviation 0.96 0.97 0.87 0.90 0.88 

 

Log-normal, gamma, normal and Weibull distributions are used to fit vehicle type-

specific and overall time headways. Table 4.3 lists the log likelihood values and the log-

likelihood ratio test statistics. The test statistics, �2, are all greater than the critical value of the 

chi-square distribution at the 5% significance level, indicating that vehicle type-specific 

headway models are significantly different from the overall headway model. In addition, based 

on the log likelihood values, Weibull distribution is the best fit model for Car-Car, Car-Truck, 

Truck-Car and Overall time headways. For Truck-Truck time headways, the best fit model is 

Normal distribution, although Weibull distribution provides a similar fit. The best fit models 

are considered as input in the car-following models in the subsequent sections. Table 4.4 lists 

the estimated parameters.  

 

Table 4.3 Log-likelihood Ratio Test Statistic of Headway Models 

Distribution Overall Car-Car Truck-Car Car-Truck Truck-Truck  �  

Log-Normal -365935 -273963 -43161 -32813 -10243 11511 
Gamma -349881 -264511 -40681 -29884 -9127 11356 
Weibull -346687 -263588 -40303 -28605 -8605 11172 
Normal -360322 -276102 -42211 -28617 -8522 9741 
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Table 4.4 Estimated Parameters of Time Headway Distributions 

Vehicle-following Type Model Parameters 

Overall Weibull 
Shape 2.082 
Scale 2.148 

Car-Car Weibull 
Shape 1.950 
Scale 2.033 

Car-Truck Weibull 
Shape 3.042 
Scale 2.699 

Truck-Car Weibull 
Shape 2.040 
Scale 2.083 

Truck-Truck Normal 
Mean 2.399 
Standard deviation 0.875 

 

Furthermore, the estimated distributions are truncated to constraint the time headway 

values within a reasonable range.   In particular, the lower bound of the time headway 

distributions is set as 0. The upper bound of the following time headways is set as 4 seconds 

(Wasielewski 1979, Dong et al. 2015). 

 

4.3.1.1 Standstill Distance 

Figure 4.4 shows the histograms of vehicle type–specific and overall standstill 

distances.  The Car-Car and Overall plots follow similar shape and are slightly right skewed. 

The Car-Truck and Truck-Car plots follow a bimodal shape. The two peaks in the plots 

correspond to medium size and large trucks, both of which are considered as trucks in the 

analysis. The sample size of Truck-Truck pairs is too small to draw a firm conclusion, and thus 

was not included in the plot. 
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Figure 4.5 Histograms of Vehicle Type–specific and Overall Standstill Distances 

 

Table 4.5 lists the means and standard deviations of standstill distances. Note that Car-

Car is the most frequent vehicle-following type, which dominates the distribution of overall 

data.  As expected, the mean standstill distances of Car-Truck and Truck-Car are significantly 

larger than the mean of Car-Car. The means of Car-Truck and Truck-Car standstill distances 

do not significantly different from each other. Because of the limited sample size of Truck-

Truck case, the mean standstill distance of Truck-Truck is not a reliable estimate. In the 

subsequent analysis, Car-Truck, Truck-Car and Truck-Truck are combined as one group, 

named Truck. 
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Table 4.5 Summary Statistics of Standstill Distances 

 Overall Car-Car Car-Truck Truck-Car Truck-Truck 
Number of observations 1,238 1,140 40 48 10 
Mean 9.67 9.41 13.35 12.37 11.07 
Standard deviation 4.53 6.32 4.73 5.78 3.69 

 

Table 4.6 lists the log likelihood values of using log-normal, gamma, normal and 

Weibull distributions to fit the standstill distances of Overall, Car-Car and Truck data. The test 

statistics, � , are all greater than the critical value of the chi-square distribution at the 5% 

significance level (i.e. 5.99).  This indicates that Car-Car and Truck standstill distance models 

are significantly different from the overall standstill distance distribution. Based on the log 

likelihood values, log-normal distribution is the best fit of Car-Car data. Gamma distribution 

is the best fit of Overall data. Weibull distribution is the best fit of Truck data. The best fit 

models are used as input in the subsequent analysis. Note that the differences between 

alternative distributions for the standstill distances of these groups are small. The estimated 

parameters of the best fit distributions are listed in Table 4.7.  

 

Table 4.6 Log-likelihood Ratio Test Statistic of Standstill Distance Models 

Distribution Overall Car-Car Truck �  
Log-Normal -3647.64 -3320.06 -313.76 27.64 

Gamma -3604.40 -3277.99 -309.36 34.1 

Weibull -3611.13 -3282.28 -307.80 42.1 

Normal -3680.66 -3341.68 -311.36 55.24 
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Table 4.7 Estimated Parameters for Standstill Distance Distributions 

Vehicle-following Type Model Parameters 

Overall Gamma 
Shape 3.95 
Rate 0.41 

Car-Car Log-Normal 
Log Scale 2.11 
Shape 0.54 

Truck Gamma 
Shape 4.17 
Rate 0.33 

 
Furthermore, the estimated distributions are truncated to constraint the standstill 

distance values within a reasonable range. In particular, the lower and upper bounds of the 

standstill distance distributions are set as 0 and 25 feet, respectively (Dong et al. 2015). 

 

4.3.2 Speed-Density Relationship 

Four different input modes are used to derive speed-density relationships for different 

car-following models: 

1) Use overall mean time headway and mean standstill distance as deterministic 

parameters. This is the typical input method in traffic simulation software. 

2) Use the means of vehicle type–specific time headways as deterministic time headway 

parameter. Use the means of Car-Car and Truck standstill distances as deterministic 

standstill distance parameters. 

3) Use overall distributions of time headways and standstill distances as stochastic 

parameters. 

4) Use distributions of vehicle type–specific time headways as stochastic time headway 

parameter. Use standstill distance distributions of Car-Car and Truck group as 

stochastic standstill distance parameters. 
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Using Pipes car-following model, the speed-density relationships of the congested 

regime can be generated. Figure 4.5(a) plots the speed-density curves generated using 

deterministic parameters. Considering the vehicle type-specific time headways and standstill 

distances, four speed-density curves are plotted, corresponding to different vehicle-following 

types. The vehicle following type-specific speed-density curves are fairly close to the overall 

speed-density curve. Figure 4.5(b) plots the speed-density region generated using stochastic 

parameters. By changing the time headway and standstill distance parameters from constants 

to distributions, the speed-density relationship change from a curve to a region. The 

stochastically distributed parameters result in a wide region of speed-density plot. The speed-

density region generated by vehicle type-specific distributions is slightly larger than the one 

generated by the overall distribution. 

 

 
a) Deterministic Parameters 

Figure 4.6 Speed-Density Plots Generated Using Pipes Car-following Model 
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b) Stochastic Parameters 

Figure 4.7 Speed-Density Plots Generated Using Pipes Car-following Model 

(Continued) 

 

The speed-density relationships of the congested regime estimated using the stead-state 

INTEGRATION car-following model are shown in Figure 4.6. Similar to Pipes car-following 

model results, using vehicle following type-specific distributions results in the largest region 

of speed-density plot (see Figure 4.6(b)). As shown in Figure 4.6(a), with deterministic time 

headway and standstill distance parameters, the speed-density curve generated using Car-Car 

parameters is significantly different from the one associated with from Car-Truck parameters. 
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a) Deterministic Parameters 

  
b) Stochastic Parameters 

Figure 4.8 Speed-Density Plots Generated Using INTEGRATION Car-following Model 
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By comparing Figure 4.5 and 4.6, INTEGRATION Car-following model generate a 

larger speed-density region than Pipes model when using the vehicle type-specific distributions 

of time headways and standstill distances. The vehicle type-specific distribution input mode 

results in the largest speed-density region, as this input mode considered both systematic and 

stochastic user heterogeneity in drivers’ behavior. The vehicle type-specific distribution input 

mode of steady state Pipes car-following model is used to compare with VISSIM simulation 

output and field measurements in the next subsections. 

 

4.3.3 Comparison of stochastic Pipes car-following model and VISSIM simulation  

The North America default values (PTV Group, 2014), as well as mean, 5th percentile 

and 95th percentile of the measured time headways and standstill distances were used as input 

to run VISSIM simulations. The time headway is converted to the CC1 parameter in VISSIM 

based on the following equation: 

ÁÁ1 = �T�+ ¼+),d)� − }}-&B58S56 =5³��95 B54Â%³$D55S                                (4.27) 

where 

ÁÁ1 is  the desired time headway for the following vehicle. 
ÁÁ0 is the standstill distance between two vehicles. 

 By varying the standstill distance in VISSIM and keeping other parameters as default, 

the scatter plot of speed-density results are shown in Figure 4.7. There is a difference between 
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speed-density regions of VISSIM result and the proposed method. The reason could be that 

the VISSIM has more parameters than proposed model to control the simulation results. 

 

 
Figure 4.9 Simulated Speed-Density Plots Using VISSIM with Varying CC0 

Parameters, Compared with Speed-Density Region Generated Using Stochastic Pipes 

Car-following Model 

 

By changing the CC1 in VISSIM and keeping other parameters as default, the scatter 

plot of the simulated speeds and densities are shown in Figure 4.8. Similar to Figure 4.7, 

VISSIM tends to overestimate the congestion effect compared to the proposed method. 
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Figure 4.10 Simulated Speed-Density Plots Using VISSIM with Varying CC1 

Parameters, Compared with Speed-Density Region Generated Using Stochastic Pipes 

Car-following Model 

 

4.3.4 Comparison of vehicle type-specific distribution input mode results and field data 

Traffic volume and speed data were collected from I-235, which is one of the busiest 

freeways in West Des Moines, Iowa, USA. The data from four sensors on I-235 are select to 

compare with the speed-density region generated using stochastic Pipes car following model. 

The data used in the analysis are collected during peak hours (7:00-9:00 a.m. and 4:00-7:00 

p.m.) on weekdays from January 1st to December 31st 2015. 
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Figure 4.9 plots the speed density data under congested traffic conditions. Most field 

data fall in the region generated from the stochastic Pipes car following model that 

incorporated vehicle type-specific time headway and standstill distance distributions. Some of 

the outliers may be caused by the conservative drivers who drive slowly and leave large time 

headway. Moreover, sensor errors can also result these outliers. By comparing Figures 4.7, 4.8 

and 4.9, we can see that the speed-density region generated by the proposed method can better 

represent real world observations than VISSIM simulation outputs.   

 

 

Figure 4.11 Field Data Compared with Speed-Density Region Generated Using 

Stochastic Pipes Car-Following Model 
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4.3.5 Travel time reliability 

One potential application of the proposed stochastic car-following model is to estimate 

travel time reliability. A Monte Carlo simulation is performed to generate the travel times 

under congested conditions. The weight of free-flow state is calculated according to the 

framework shown in Figure 4.2. Travel time reliability measures are calculated according to 

Eq. 4.3~4.7. 

The study freeway corridor of I-235, where radar sensor data and INRIX data were 

collected, is shown in Figure 10. The locations of radar sensor are shown in Figure 4.10. The 

study freeway segment is 13-mile long. 

 

 

Figure 4.12 Study Freeway Segment (Google 2017) 

 

In addition, multiple VISSIM simulation runs were executed to generate congested and 

uncongested travel times. The traffic volumes of each mainline segment, on-ramp and off-
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ramp for both congested and uncongested scenarios are shown in Table 8. CC0 and CC1 are 

set as 9.7 feet and 1.3 seconds, respectively, based on the measured mean time headway and 

standstill distance as described in Section 4.3.1. Other parameters are kept as default. Ten 

replications were performed for each scenario. The planning horizon of the simulation is set as 

5,400 seconds, including 1,800-second warm up period. The travel time of each vehicle 

traveling from the starting point to the ending point was collected, excluding the data during 

the warm-up period.  

 

Table 4.8 Traffic Volumes in Congested and Uncongested Conditions 

Segment Description Volume (veh/hr) 

ID Station Type Lanes Congested Uncongested 

1 
I-235 EB to VALLEY WEST-

EB 
Mainline 3 5727 1733 

2 
I-235 EB to VALLEY WEST-

EB-R 
Off-ramp 1 340 108 

3 Ramp 1 On-ramp 1 285 438 

4 
I-235 EB from Vly West Dr-

EB 
Mainline 3 5672 2063 

5 
I-235 EB from Vly West Dr-

EB-R 
On-ramp 1 230 580 

6 Ramp 2 Off-ramp 1 146 114 

8 
I-235 WB E of 22nd STREET-

EB 
Mainline 3 5756 2529 

7 
I-235 WB E of 22nd STREET-

EB-R 
On-ramp 1 874 308 

9 Ramp 3 Off-ramp 1 470 455 

10 
I-235 EB @ 8th Street Loop-

EB 
Mainline 3 6160 2382 

11 
I-235 EB @ 8th Street Loop-

EB-R 
On-ramp 1 408 307 

12 Ramp 4 Off-ramp 1 176 52 

13 I-235 EB EAST OF 63RD-EB Mainline 3 6392 2637 
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Table 4.9 Traffic Volumes in Congested and Uncongested Conditions (Continued) 

Segment Description Volume (veh/hr) 

ID Station Type Lanes Congested Uncongested 

14 
I-235 EB EAST OF 63RD-EB-

R 
On-ramp 1 644 360 

15 Ramp 5 On-ramp 1 127 127 

16 Ramp 6 Off-ramp 1 982 665 

17 I-235 at 42nd STREET EB-EB Mainline 4 6181 2459 

18 Ramp 7 On-ramp 1 12 380 

19 Ramp 8 On-ramp 1 39 172 

20 I-235 EB 28th STREET-EB Mainline 4 6232 3011 

21 Ramp 9 Off-ramp 1 751 385 

22 Ramp 10 On-ramp 1 35 35 

23 I-235 EB to MLK-EB Mainline 4 5516 2661 

24 Ramp 11 Off-ramp 1 278 346 

25 Ramp 12 Off-ramp 1 171 214 

26 Ramp 13 Off-ramp 1 310 387 

27 Ramp 14 On-ramp 1 120 120 

28 Ramp 15 On-ramp 1 15 15 

29 
I-235 WB WEST END of 

BRIDGE-EB 
Mainline 4 4892 1848 

30 Ramp 16 On-ramp 1 247 462 

31 I-235 EB at WALKWAY-EB Mainline 4 5139 2310 

32 
I-235 EB at WALKWAY-EB-

R 
Off-ramp 1 375 108 

33 
I-235 EB 9th STREET 

WALL-EB 
Mainline 3 4764 1460 

34 
I-235 EB 9th STREET 

WALL-EB-R 
Off-ramp 1 460 42 

35 Ramp 17 On-ramp 1 46 524 

36 Ramp 18 Off-ramp 1 373 273 

37 Ramp 19 On-ramp 1 2 46 

38 Ramp 20 Off-ramp 1 59 59 

39 I-235 EB at E 21st St-EB Mainline 3 3920 1656 

40 I-235 WB at Washington-EB Mainline 3 3920 1656 

41 
I-235 WB at Washington-EB-

R 
On-ramp 1 374 192 
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Table 4.10 Traffic Volumes in Congested and Uncongested Conditions (Continued) 

Segment Description Volume (veh/hr) 

ID Station Type Lanes Congested Uncongested 

42 Ramp 21 Off-ramp 1 20 164 

43 Ramp 22 On-ramp 1 57 107 

44 Ramp 23 Off-ramp 1 642 317 

45 I-235 NB EUCLID LOOP-EB Mainline 3 3689 1474 

46 I-235 NB EUCLID LOOP-EB-R On-ramp 1 216 52 

47 Ramp 24 On-ramp 1 201 10 

48 I-235 NB from EUCLID-EB Mainline 3 4106 1536 

49 I-235 NB from EUCLID-EB-R On-ramp 1 425 144 
 

The travel time reliability measures calculated using INRIX travel time data are 

compared with the reliability measures obtained from the proposed model and VISSIM. As 

shown in Table 4.9, both the proposed model and VISSIM overestimated the mean travel time 

and underestimated the travel time reliability of the study freeway corridor. The errors in the 

proposed travel time estimation model could be attributed to simplified two component travel 

time distribution. Travel time distribution of free-flow state is simplified to Dirac delta 

distribution. Consequently, the travel times larger than free-flow travel time are ignored. The 

proposed model generates more accurate reliability measures than VISSIM with less 

computational time. 
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Table 4.11 Comparison of Travel Time Reliability Measures Calculated using Different 

Methods 

 Mean 
95th 
percentile 
travel time 

Planning time 
index 

Buffer 
time 

Buffer time 
index 

CPU Time 
(sec) 

INRIX 17.26 24.69 1.90 7.43 0.43  
Model-
based 

17.52 24.30 1.87 6.78 0.39 278 

VISSIM 17.78 23.90 1.84 6.12 0.34 1198 
 

4.4 Summary 

This chapter presented a method to estimate travel time reliability measures by 

incorporating standstill distance and time headway distributions in car-following models. First, 

standstill distance and following time headway distributions were estimated based on data 

collected at various locations in Iowa, USA. For time headway distributions, five distributions 

were estimated for different vehicle following type, Car-Car, Truck-Truck, Car-Truck and 

Truck-Car and Overall. For standstill distance distributions, Car-Car standstill distances are 

significantly different from Car-Truck and Truck-Car standstill distances. Since Truck-Truck, 

Car-Truck and Truck-Car standstill distance distributions do not significantly differ from each 

other, Car-Truck, Truck-Car and Truck-Truck data are combined as one group. Thus, three 

distributions were estimated for Car-Car, Truck and Overall standstill distances. Second, time 

headway and standstill distance distributions are incorporated in the steady-state of FRESIM 

and INTEGRATION car-following models to generate speed-density relationships. The results 

showed that the vehicle type-specific distribution input could result in a speed-density region 
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that better replicate real world observations, compared to the speed-density curves generated 

using mean standstill distance and headway parameters. In addition, since the car-following 

logic within VISSIM under steady-state conditions reverts to the Pipes model, the results of 

vehicle type-specific distribution input mode incorporated in steady-state Pipes model is 

compared with the VISSIM simulation output. The results showed that the speed-density 

region derived from the steady-state Pipes model enclose most of the field data and 

outperforms VISSIM simulation output. Third, travel times under congested state are generated 

using the steady-state of Pipes car-following model with stochastic standstill distance and time 

headway parameters. The simplified two-component model is applied to estimate travel time 

reliability measures. The travel time reliability measures generated using the proposed model, 

VISSIM and INRIX data are compared. Both the proposed method and VISSIM the mean 

travel time and underestimated the travel time reliability of the study freeway corridor. The 

proposed method provides better estimates with less computational time, compared to VISSIM 

simulation.  

 In this study, I recommended that microsimulation models are modified to include the 

option for standstill distance and time headways to follow distributions as well as be set 

separately for different vehicle classes. The proposed model provided an accurate and fast way 

to estimate corridor-level travel time reliability considering heterogeneity in driver behavior in 

terms of following time headways and standstill distances. Moreover, the proposed method 

can estimate real-time travel time reliability. Considering stochastic driver behavior parameter, 

travel time reliability measures can be derived based on real time density.   
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CHAPTER 5. TRAVEL TIME RELIABILITY IN URBAN 

FREEWAY WORK ZONES  

This chapter aims to develop a framework to predict the capacity of work zone. And 

travel time reliability of work zone is estimated based on the predicted speed-density-volume 

relationship. This chapter is organized as follows. Section 5.1 introduces the background of 

the study. Section 5.2 describes the work zone and non-work zone data. The capacity prediction 

method is describes in section 5.3, as well as the travel time reliability estimation method. The 

results and summary of the findings are presented in Section 5.4 and Section 5.5, respectively. 

5.1 Introduction  

Due to an aging infrastructure and increasing demand on the transportation network, 

work zones increase continuously in United States. In particular, work zones on freeways 

usually cause serious disruptions to traffic, significant delays, and traffic unreliability. To 

mitigate the impact and plan proper strategies, forecasting the work zone capacity on an 

existing freeway is important. Moreover, estimating work zone travel time and its reliability 

helps agencies to evaluate the performance of the freeway segment.  

5.2 Data Description 

Traffic flow, speed, and occupancy data were collected by Iowa Department of 

Transportation (DOT) by placing Wavetronix radar sensors in the work zone areas. The work 

zones in Iowa during 2015 and 2016 construction seasons are investigated in this study.  
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• Work zone data: Traffic volume, speed and occupancy data collected when the work 

zone is active in 2015 and 2016. The date and time of work zones are determined by 

combining traveler information from Iowa DOT and the contractor reports and plans. 

Traffic data collected during an active work zone is categorized as work zone data. 

• Non-work zone data: Traffic volume, speed and occupancy data collected from May to 

August in 2015 at a freeway section in Des Moines where no work zone presented. The 

freeways in Des Moines have the high annual average daily traffic and the detailed 

information, such as incident, special events and weather reports. As shown in Table 1, 

the traffic data from station “I-35/80 EB WEST of 2nd AVENUE-EB” is treated as the 

baseline data because this location has the same speed limit and similar geometric 

characteristic as the work zones in Quad Cities and Sioux City. 

• Before work zone data: Traffic data collected from May to August in 2014 from the 

sensors located in the same or nearby locations of the work zone sites in 2015 and 2016.    

The configurations of the work zones are summarized in Table 5.1. The layouts of study 

work zones are shown in Figure 5.1. Traffic data were collected during the daytime. Due to the 

lack of vehicle classification information in the dataset, the truck percentage is estimated based 

on annual average daily traffic data published by Iowa DOT. 
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a) Quad Cities 

 

b) Sioux City 

 

c) Iowa City 

 

d) Council Bluffs 
 

Figure 5.1 Work Zone Layouts. 

Based on the volume and speed measurements, the density is calculated by Eq. 5.1. 

Å = Æ/Ç                                                                 (5.1) 

where, 

V is speed (mph); 

¬ is density (veh/mile/ln); and  

² is volume (veh/hr/ln).  
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Table 5.1 Summary of Work Zone Configurations 

Condit
ion 

City Station ID 
Truck 

Percentage 

Speed limit (mph) 
Control Type 

Barrier 
Type 

Area 
Type 

Work 
Time Original 

Work 
zone 

Work 
Zone 

Quad 
Cities 

IWZ 3077 WB 29% 65 55 Lane closure Concrete Urban Daylight 

Quad 
Cities 

IWZ 3542 EB 29% 65 55 Lane closure Concrete Urban Daylight 

Sioux 
City 

IWZ 3074 NB 13% 65 55 
Lane closure 

and shift 
Concrete Urban Daylight 

Iowa City 
I-380 NB North of Swan 
Lake to North of River 

15% 70 55 
Lane closure 

/shift 
Plastic 
Drum 

Urban Daylight 

Council 
Bluffs 

CBDS 12 WB 17% 65 55 
Lane closure 

/shift 
Concrete Urban Daylight 

Before 
Work 
Zone 

Iowa City 
I-380 NB North of Swan 
Lake to North of River 

15% 70      

Council 
Bluffs 

CBDS 10 WB 17% 65      

Non-
work 
Zone 

Des 
Moines 

I-35/80 EB WEST of 2nd 
AVENUE-EB 

14% 65      

86 
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To focus on the impact of work zones, the data collected on rainy days are removed 

based on the weather data obtained from Road Weather Information System (RWIS). In 

addition, raw data was filtered to remove erroneous measurements. First, the faulty sensors or 

sensor data that violated traffic flow theory were removed. Wells et al. (2008) proposed a 

method that used the relationship of speed, volume and occupancy to detect loop sensor errors. 

In this study, this method was applied for radar sensor anomaly detection, as shown in Eq. 5.2. 

According to the technical reports from  FHWA (2004) and Minnesota Department of 

Transportation (Minge et al., 2012), the possible vehicle length is from 10 to 75 ft. The average 

effective vehicle lengths (AEVL) are within this range. . For traditional loop sensors the 

detection range (DTR) is the length of the detector. However, for Wavetronix HD sensors, one 

virtual line was used to represent the detector (Wavetronix LLC 2013). Thus, only AEVL was 

used to identify anomalies. After calculating the AEVL of each observation using speed, 

volume and occupancy collected from Wavetronix sensors, the ones that were out of the normal 

range were marked as data error and removed from the dataset. The overall reduction rate is 

24.50%. 

mhÉ; = � Ê-=Ë°                                                   (5.2) 

where  

AEVL is the average effective vehicle length (feet); and 

O is occupancy. 

5.3 Methodology 

Work zones may reduce speed limits and affect capacity (HCM 2016). Thus, it can 

have significantly impact on travel time variability (Edwards and Fontaine, 2012). This section 
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presents an approach to predict work zone capacity based on logistic speed-density model. 

Based on the predicted capacity, a work zone travel time and its reliability estimation method 

is proposed.   

 

5.3.1 Work Zone Capacity  

As described in literature review (Chapter 2.3), speed-volume-density relationship has 

been applied to estimate work zone capacities. To overcome the limitation of multi-regime 

models, single-regime is used in this study. Many single-regime models have been developed 

to describe the speed-volume-density relationship, including Greenshields model 

(Greenshields, 1934), Greenberg model (Greenberg, 1959), Underwood model (Underwood, 

1961), Northwestern model (Drake et al., 1967), Del Castillo model (Castillo and Benítez, 

1995a, 1995b) and five-parameter logistic speed-density model (MacNicholas’ model). Wang 

et al. (2011) compared these models and found that the five-parameter logistic speed-density 

model outperformed other models in terms of fitting the field observations. Consequently, five-

parameter logistic speed-density model is used in this study. 

Based on logistic speed-density model, the relationship between free-flow speed and 

work zone capacity is derived. The work zone free-flow speed is a function of speed limits and 

work zone configurations  (HCM 2016). The relationship between turning density of the 

logistic model and the free-flow speed is also derived to predict speed-density and speed-

volume relationships. 

According to MacNicholas’ model, the function of general logistic speed-density 

relationship is expressed as Eq. 5.3. 
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Ç = ÇÌ + ÇÍ	ÇÌ
Î{&ÏyÐÑÅsÅÒÓ{ ÔÕÓÖ                                                            (5.3) 

where, 

Vº is the free flow speed (mph); 

V× is the average speed under stop and go conditions (mph); 

k% is the turning point that the speed–density curve transitions from free flow to congested 

flow (veh/mile/ln); 

θ� is the scale parameter; and 

θ  is the parameter that controls the lopsidedness of the curve. 

From Eq. 5.3, traffic density can be derived as follows: 

k = kÚ + θ� log Þ+�( ß9RÂÑC±sCàCsCà Ô
á@ â − 1ã                                            (5.4) 

By substituting Eq. 5.4 into Eq. 5.1, the speed-volume function is derived as follows: 

q = k%V + θ� log Þ+�( ß9RÂÑC±sCàCsCà Ô
á@ â − 1ã É                                      (5.5) 

The relationship between turning point (k% ) and inflection point (kåæ) in the five-

parameter logistic model is written in Eq. 5.6 (Wang et al., 2011).  

k% = kåæ + ç�log �ç �                                                       (5.6) 

Where, 
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kåæ is the inflection point, where the logistic speed-density curve switches from being 

concave to convex. 

Moreover,  k% has a linear relationship with θ� and θ  (Wang et al. 2011). In order to 

remove the collinearity between k% and θ�, θ  , ~ is introduced as turning parameter. In other 

words, k%  is represented by a formula of ~, θ�, θ , Ék and Él. When ç  equal to 1, k% = kåæ =
kè (Wang et al., 2011). Therefore, we assume 

kè = kåæ + ~ ç�log�ç �                                                      (5.7) 

where 

kè is the density at capacity (veh/mile/ln). 

 

As a result,   

É� = Ék + =±	=à
�&á@és��ê@                                                       (5.8) 

where 

É� is the speed at capacity (mph). 

 

Using the speed-volume relationship, the capacity is reached when the following two 

conditions are met: 

ë°ë= = ë§ë= ∙ É + ¬ = 0                                                           (5.9) 

ë@°ë=@ = ë§ë= + ë@§ë=@ ∙ É + ë§ë= < 0                                                  (5.10) 
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The derivation of the first condition and the second condition are shown in Appendix 

A. 

Based on the first condition (i.e. Eq. 5.9), the inflection density is derived as follows: 

¬ìí = î��ïð
�&á@és��ê@&ïñ	ïð�
�&á@és��î@é�ïñ	ïð� − ~ ç�log�ç �                             (5.11) 

As a result,  

 ¬% = î��ïð
�&á@és��ê@&ïñ	ïð�
�&á@és��î@é�ïñ	ïð� + �1 − ~ �ç�log�ç �                       (5.12) 

The derivation of Eq. 5.11 is shown in Appendix B. 

Therefore, the modified five-parameter logistic speed-density relationship and the 

speed-volume relationship are shown as follows: 

k = î��ïð
�&á@és��ê@&ïñ	ïð�
�&á@és��î@é�ïñ	ïð� + �1 − ~ �ç�log�ç � + θ� log Þ+�( ß9RÂÑC±sCàCsCà Ô
á@ â − 1ã             

(5.13) 

q = Þî��ïð
�&á@és��ê@&ïñ	ïð�
�&á@és��î@é�ïñ	ïð� + �1 − ~ �ç�log�ç � + θ� log Þ+�( ß9RÂÑC±sCàCsCà Ô
á@ â − 1ãã É       

(5.14) 

Based on Eq. 5.12, the turning point changes with free flow speed, average speed at 

stop-and-go condition, ç� , ç  and ~. ç� and  ç  are the shape parameters of the speed-density 

curves. In addition, two assumptions are made: 

• During the work zone V×, ç� and  ç  remain the same as the ones before work 

zone.  

•  The same type of work zones have the same value of ~.  
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From the second condition derived from Eq. 5.10, the exponential function is always 

greater than 0. Since θ�  is positive, when Þexp ßõö÷Ñøñsøðøsøð Ô
î@ â − 1ã × θ × �V − 2V×� + V  is 

greater than 0, the condition stated in Eq. 5.10 is satisfied. As a result, we assume that 

                 Þexp ßõö÷ÑøñsøðøùsøðÔ
î@ â − 1ã × θ × �Vè − 2V×� + Vè > 0                               (5.15) 

When Vè ≥ 2V×, the second condition is satisfied. 

As a result, the capacity is calculated as follows: 

²� = �)� ²,   Éú�2V×, Vº�                                         (5.16) 

By adopting the free-flow speed prediction method proposed by HCM (2016), a work 

zone capacity prediction framework is proposed, as follows: 

Step 1: Calibrate the five-parameter logistic model using traffic data collected before work 

zones. The function “nls” in R statistics package (R Development Core Team, 2011) is 

utilized to fit the speed-density curve based on traffic data before work zones.  

Step 2: Compute the standard deviation of free-flow speed distribution before work zone. 

Step 3: Predict the mean work zone free-flow speed based on HCM (2016): 

Él = 9.95 + 33.49 × �?6 + 0.53 × �? − 5.6 × �B}$ì − 3.94 × �ü6 − 1.71 × �"U − 1.45 × �U6     

(5.17) 

where 

�?6  is the ratio of the normal speed limit to the work zone speed limit; 

�? is the speed limit of work zone (mph); 
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�ü6 is the barrier type, 0 for concrete, 1 for plastic cone or drum; 

�"U indicates the time of the work zone; 1 for daytime, 0 for nighttime; 

�U6 is the number of ramps within 3 miles upstream and 3 miles downstream from the 

midpoint of work zone; and 

�B}$ì is the lane closure severity index,  �B}$ì = %R%89 4jik56 Rl 9845?4jik56 Rl RD54 9845?@. 

Step 4: Determine ~ based on the work zone type. 

Step 5: By assuming the standard deviations of the normally-distributed free-flow speeds 

during work zone are the same as before work zone, the 95th percentile and 5th percentile 

free-flow speeds of work zone can be derived, given the mean and the standard deviation 

of work zone free-flow speeds calculated in Step 3 and Step 2, respectively. 

Step 6: Predict the range of work zone capacities using Eq. 5.14 and 5.16. In particular, V×, θ� 

and θ   are determined in Step 1. ~ is determined in Step 4. The 95th percentile and 5th 

percentile free-flow speeds are determined in Step 5. 

 

5.3.2 Work Zone Travel Time and Its Reliability Estimation 

In the study of Newman (1986), a method is proposed to estimate segment speed by 

considering the impact factors, such as weather and lane closure, on freeway capacity and free-

flow speed. Based on the modified logistic speed-density model proposed in section 5.3.1, the 

capacity, density at capacity and free flow speed of work zone can be derived.  By using the 
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derived parameters in the Newman segment speed estimation model, the segment speed of 

work zone can be estimated. Accordingly, the travel time through the work zone is estimated.  

According to the study of Newman (1986), the segment speed of work zone is 

calculated as follows: 

' = 22' × 'm2 + þ1 − +ab�22'×'m2+1−Á×Ám245 �× ²�×��K�                       (5.18) 

where 

S is the segment speed of the work zone (mph); 

FFS is the original free-flow speed (mph); 

SAF is the speed adjustment factor; 

C is the original capacity (veh/hr/ln);  

CAF is the capacity adjustment factor; and 

q is segment flow rate (veh/hr/ln). 

Free-flow speed, density at capacity and capacity of work zone can be estimated from 

the framework proposed in section 5.3.1. Consequently, Eq. 5.18 is modified as follows: 

' = É� + �1 − +ab�É�+1−�t´t�× ²�t�                                               (5.19) 

As a result, the travel time of work zone is calculated as follows: 

� = ;
É�+Þ1−+abÑÉ�+1−�t´tÔ× ²�tã × 60                                               (5.20) 
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where, 

T is the travel time (min); and 

L is the length of work zone (mile). 

For each measured work zone flow rate, the travel time is estimated by using Eq. 5.20. 

Moreover, the travel time reliability measures are derived based on the estimated travel times.  

5.4 Result 

5.4.1 Speed-Volume-Density Relationship 

The observed and calibrated traffic speed-volume-density relationships for different 

work zones are compared with the non-work zone site. The calibrated parameters are shown 

in Table 5.2.  

 

Table 5.2 Parameters of Logistic Speed-Density Models 

Data collection site 
Él 
(mph) 

Ék 
(mph) 

¬% (veh/mile/ln) ç� ç  α 

Typical Non-work Zone 69.39 5.14 34.95 7.61 0.35 0.489 

Work Zone 
IWZ 3077 WB 63.74 5.32 21.02 7.53 0.37 -0.263 
IWZ 3542 EB 64.46 5.06 24.54 7.82 0.37 -0.274 
IWZ 3074 NB 51.67 5.17 20.54 7.51 0.38 -0.289 

 

As shown in Figure 5.2 and Figure 5.3, free flow speeds and turning density are smaller 

at the work zone sites compared to the ones at the non-work zone site. The free flow speeds 

are decreased because of the reduction of speed limits. Moreover, the lane reduction and 

roadside objects could affect capacity which is related to free flow speed and turning density 
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in logistic speed-density relationship. Table 5.2 shows that the work zone speed-density curves 

have similar stop-and-go speed (Ék) and shape parameters (ç� and  ç ) as the typical non-work 

zone curve. ç  controls the lopsidedness of the curve. And ç� describes how fast the speed will 

drop with density increases. Based on the sensitivity analysis by Wang et al. (2011), jam 

density increases when shape parameters increases. Since jam density is driven by standstill 

distance, the shape parameters are related to standstill distance which may not be effected by 

work zone. Moreover, the stop-and-go speed (Ék) increases when the shape parameters (ç� and 

 ç ) increase. Since the work zone have similar shape parameters as non-work zone, the stop-

and-go speeds are similar. Moreover, the values of turning parameter �α� at work zone sites 

are significantly smaller than the one at the non-work zone site. However, the values of turning 

parameter �α� at different work zones are similar. Besides free flow speed, turning parameter 

is another factor that impacts turning density. Moreover, turning density is highly related to 

capacity which depends on time headway. Therefore,  the difference of turning parameters 

between work zone and non-work zone could be attributed to the time headway in work zone 

is larger than non-work zone, as described by Weng et al. (2014). Since the work zones have 

similar characteristics, such as original speed limit, speed limit during work zone and control 

type, the turning parameters are similar. In the subsequent analysis, α of work zones is set as -

0.27. 
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a) IWZ 3077 

  
b) IWZ 3542 

Figure 5.2 Comparison of Typical Speed-volume Relationship of Non-work Zone and 

Work Zone. 
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c) IWZ 3074 

Figure 5.3 Comparison of Typical Speed-volume Relationship of Non-work Zone and 

Work Zone. (Continued) 

 

a) IWZ 3077 
Figure 5.4 Comparison of Typical Speed-density Relationship of Non-work Zone 

and Work Zone. 
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b)  

  
c) IWZ 3542 

 

d) IWZ 3074 
Figure 5.5 Comparison of Typical Speed-density Relationship of Non-work Zone and 

Work Zone. (Continued) 
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The diagnostic plots are shown in Figure 5.4. Figure 5.4(a) shows the residuals against 

the predicted speeds. The residuals randomly scattered around 0. Figure 5.4(b) shows the 

normal probability plot of the residuals. It shows that the residual distributions have the bell-

shape and are slightly skewed. The skewness might be because that the least squares estimation 

does not require the residuals to be normally distributed as long as the mean squared error is 

minimized. The skewness may be eliminated by increasing the sample size. Generally, the 

modified five-parameter logistic model fits the field data well.  

 
a) Residual plots  

 

Figure 5.6  Diagnostic Plots of Speed-density Relationships of Typical Non-work Zone 

and Work Zone. 
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b) Residual distributions 

Figure 5.7  Diagnostic Plots of Speed-density Relationships of Typical Non-work Zone 

and Work Zone. (Continued) 

 

5.4.2 Performance Evaluation of Capacity Prediction Framework 

The speed-volume-density relationships before and after work zone started are 

compared, as shown in Figure 5.5 and Figure 5.6, respectively. In order to investigate the 

relationship between work zone capacity and the free-flow speed, V×, θ� and θ   are calibrated 

by using the before work zone data and are assumed to remain the same during the work zone. 

Based on the predicted free-flow speed range, the range of capacity can be predicted, which 
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covers the capacity estimated from the work zone data. The estimated work zone speed-

volume-density relationship fall into the predicted speed-volume-density range. For the work 

zone in Iowa City, the predicted capacity range is slightly smaller than the observed capacity 

range. One reason is that the predicted free-flow speed range is smaller than the observed free-

flow speed range at the work zone, while we assumed the same standard deviation of free-flow 

speeds before and during work zone. 

 

  
a) Council Bluffs 

Figure 5.8 Speed-volume Relationships Before and During Work Zone 
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b) Iowa City 

Figure 5.9 Speed-volume Relationships Before and During Work Zone (Continued) 

 

 
a) Council Bluffs 

Figure 5.10 Speed-density Relationships Before and During Work Zone 
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b) Iowa City 

Figure 5.11 Speed-density Relationships Before and During Work Zone (Continued) 

 

The diagnostic plots are shown in Figure 5.7. Figure 5.7(a) shows the residuals against 

the predicted speeds. The residuals randomly scattered about 0, with some outliers. Figure 

5.7(b) shows the normal probability plot of the residuals. It shows that the residual distributions 

have the bell-shape and are slightly skewed.  
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a) Residual plots 

 
b) Residual Distributions 

 

Figure 5.12 Diagnostic Plots of Speed-density Relationships Before-and During Work 

Zone 
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Additionally, the predicted capacity is compared with the capacity estimated using 

WorkZoneQ software, HCM and the maximum 15-minute flow rate. As shown in Table 5.3, 

the modified five-parameter logistic model generates similar results as WorkZoneQ and HCM. 

The maximum 15-minute volume tends to overestimate capacity, compared to logistic model 

and WorkZoneQ. Moreover, most of the estimated capacities using logistic model, HCM, and 

WorkZoneQ are within the predicted capacity range. The upper bound of the predicted 

capacity, which is based on 95th percentile of free-flow speeds, is close to the maximum 15-

min flow rate. The lower bound of the predicted capacity is based on 5th percentile of free-

flow speeds. As expected, the work zone in Iowa City, which has a larger free-flow speed 

reduction, has a lower capacity. The work zones that have similar free-flow speed reduction 

demonstrate similar capacities.    

 

Table 5.3 Capacities from Proposed Method, HCM, WorkZoneQ and Maximum 15-

min Flow Rate 

City Work Zone 

Maximum 
15-min 
Flow 

Rate(veh/
hr/ln) 

Estimated Capacity (veh/hr/ln) 
Predicted 

Capacity  (veh/hr/ln) 

HCM 
Logistic 
Model 

WorkZone
Q 

Upper 
bound 

Lower 
bound 

Quad 
Cities 

IWZ 3077 WB 1572 1239 1267 1296 1392 1128 

Quad 
Cities 

IWZ 3542 EB 1488 1245 1206 1296 1318 1129 

Sioux 
City 

IWZ 3074 NB 1512 1394 1413 1313 1455 1156 

Iowa 
City 

I-380 NB North 
of Swan Lake to 
North of River 

1296 1199 1058 1424 1114 933 

Council 
Bluffs 

CBDS 12 WB 1524 1517 1376 1313 1414 1100 
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In Figure 5.8, the lower and upper bounds of the capacity predicted by the proposed 

method (i.e. the shaded area) is compared with the results reported in the literature. The 

predicted capacities are located in the capacity range of the literature. However, the prediction 

tend to be lower than the work zone capacities in the literature. One of main reasons is that 

maximum observed volume is used as capacities in the most of the literatures.  

 

 

 
Figure 5.13 Comparison of Estimated Capacity and Existing Literatures 

 

5.4.3 Work Zone Travel Time and Its Reliability Estimation  

The proposed methodology in section 5.3.2 is applied to estimate the travel time of 

work zone in Iowa City. The Newman model-based travel time (Newman-TT) and INRIX 
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travel time (INRIX-TT), represented as travel time index, are plotted in Figure 5.7.  Travel 

times are estimated for the morning peak and afternoon peak during the construction season. 

Figure 5.7 compares the time-dependent travel times estimated by the proposed Newman -

based model and INRIX data on example days. It shows that the Newman model-based travel 

time index estimation roughly followed the pattern of the INRIX travel time index. Similar 

patterns are observed for other days as well. 

 

Figure 5.14 Comparison of Model-based and INRIX Travel Time Index 

 

Moreover, travel times of peak hours during work zone construction period are 

estimated using Eq. 20.  These travel times are used to derive the work zone travel time 

reliability indices, as in Table 5.4. Comparing the travel time reliability indices of Newman-

TT and INRIX-TT, the travel time reliability indices of Newman-TT are close to INRIX-TTs. 

Mean travel time, standard deviation, 95th percentile travel and planning time index are within 

10% error range.   
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Table 5.4 The Reliability Indices of INRIX Travel Time and Newman Model-based 

Travel Time 

  
Mean 
(min) 

Standard 
Deviation 

95th 
Percentile 

(min) 

Planning 
Time Index 

Buffer 
Time (min) 

Buffer 
Time Index 

Newman -
TT 8.78 0.86 10.29 1.17 1.51 0.17 

INRIX-TT 8.55 0.95 10.53 1.23 1.98 0.23 
 

5.5 Summary  

In this chapter, a modified five-parameter logistic model is developed to describe the 

speed-density relationship. The calibrated speed-density models show that, the free flow speed 

and turning density are smaller when work zone presents compared to typical non-work zone 

conditions. Moreover, a capacity prediction method is proposed based on the relationship 

between free-flow speed and work zone characteristics and the logistic speed-density model. 

A before-and-after study is conducted to evaluate the performance of the proposed work zone 

capacity prediction method. The logistic model based method can predict speed-density ranges 

that enclose most of the scatter of the field data.  

Moreover, the proposed work zone capacity estimation method is compared with the 

capacities estimated using WorkZoneQ software. The result shows the logistic model generates 

similar results as WorkZoneQ and are generally smaller than the maximum 15-min flow rate. 

The predicted upper bound of capacity is close to the maximum 15-min flow rate. Moreover, 

most of the estimated capacities using logistic model, HCM, and WorkZoneQ are located 

within the predicted capacity range. The work zone that has the largest free-flow speed 
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reduction results in the smallest capacity. The work zones that have similar free-flow speed 

reduction have similar capacities. 

Second, based on the predicted speed-density-volume relationship, the work zone 

travel time and its reliability are estimated. The result shows that the Newman model-based 

travel time index estimation roughly followed the pattern of the INRIX travel time. Moreover, 

the travel time reliability indices based on Newman-TT are close to the indices based on 

INRIX-TT. 

This chapter proposed a new method to predict speed-volume-density relationship and 

capacity of work zones. The proposed method can predict speed-density ranges that enclose 

most of the scatter of the field data. Moreover, the predicted parameters of speed-volume-

density relationship are used to estimated work zone travel time and its reliability. The travel 

time pattern and travel time reliability indices based on Newman model are close to INRIX-

TTs. 
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CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH 

6.1 Research Highlights 

This dissertation addresses a series of research questions related to travel time 

reliability on urban freeways, including (1) design a travel time estimation method to quantify 

link- and corridor- level travel time and its distribution using radar sensor data; (2) develop a 

method to estimated link travel time reliability measures by incorporating stochastic standstill 

distance and time headway parameters in FRESIM car following model; and (3) develop an 

capacity prediction framework and a travel time reliability estimation method for work zones 

on freeway. 

 

6.1.1 Estimating Corridor-Level Travel Time Reliability Using Radar Sensor Data 

This dissertation presented a method to estimate corridor-level travel times based on 

data collected from roadside radar sensors, considering spatially correlated traffic conditions. 

Link-level and corridor-level travel time distributions are estimated using these travel time 

estimates and compared with the ones estimated based on probe vehicle data. The maximum 

likelihood estimation is used to estimate the parameters of Weibull, gamma, normal, and 

lognormal distributions. According to the log likelihood values, lognormal distribution is the 

best fit among all the tested distributions. Corridor-level travel time reliability measures are 

extracted from the travel time distributions. The proposed travel time estimation model can 

well capture the temporal pattern of travel time and its distribution.  
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6.1.2 Incorporating Standstill Distance and Time Headway Distributions in Car 

Following Models to Estimate Travel Time Reliability 

This research presented a method to estimate travel time reliability measures by 

incorporating standstill distance and time headway distributions in car-following models. The 

method is based on simplified two-component travel time distribution.  By using Monte Carlo 

simulation, the speed-density region under congested condition and the travel time reliability 

measures can be generated. Traffic flow, density, and speed data from Iowa DOT, travel time 

data from INRIX and VISSIM simulation are used to validate the model’s estimates. The main 

findings include: 

1) The vehicle type-specific distribution input could result in a speed-density 

region that better replicate real world observations, compare to the speed-

density curves generated using mean standstill distance and headway 

parameters. 

2) The speed-density region derived from the steady-state Pipes model encloses 

most of the field data and outperforms VISSIM simulation output. 

3) Both the proposed method and VISSIM slightly overestimated the travel time 

reliability of the study freeway segment. The proposed method provides better 

estimates in a faster time, compared to VISSIM simulation.  

 

6.1.3 Travel Time Reliability of Urban Freeway Work Zones 

The impact of work zone on capacity is investigated in this dissertation. A method to 

estimate capacity and travel time of work zones is proposed.   First, the speed-density 

relationship of work zones and non-work zone are calibrated by using the modified five-
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parameter logistic model. By comparing the calibrated speed-volume-density relationships for 

different work zones with the non-work zone site, the work zones have similar stop-and-go 

speed (Ék) and shape parameters (ç� and  ç ) as the typical non-work zone curve. Moreover, 

the values of turning parameter �α� at work zones are similar. Therefore, a capacity 

prediction method is proposed based on the modified five-parameter logistic model. The 

predicted upper bound of capacity is close to the maximum 15-min flow rate. 

Moreover, by using the predicted capacity, density at capacity and free flow speed, a 

travel time estimation method is modified from the segment speed estimation model proposed 

by HCM. The estimated travel times, which are based on HCM-model, roughly followed the 

pattern of the INRIX travel times. The travel time reliability indices are estimated directly from 

the estimated travel times. The result shows that the travel time reliability indices based on 

HCM-TT are close to the indices based on INRIX-TT.   

6.2 Summary of Contributions 

The dissertation consists of the following main contributions:  

First, the proposed travel time estimation method is based on data collected from 

roadside radar sensors and considering spatially correlated traffic conditions. Different from 

the travel time estimation methods described in Chapter 2, the proposed method considered 

the impact of spillback from a downstream bottleneck on target link travel time. 

Second, this research proposed a stochastic modeling approach to estimate corridor 

travel time reliability measures. Using Dirac delta distribution to present free-flow state of two-

component travel time distribution, the travel time reliability indices calculation based on two-

component travel time distribution is simplified. Moreover, by incorporating stochastic 
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standstill distance and time headway parameters in Pipes car-following models, a 

computationally-efficient travel time reliability measure estimation is proposed.  

Third, one of the main contributions of work zone travel time reliability problem is the 

incorporation of work zone characteristics into logistic speed-density model to predict the 

speed-volume-density relationship and capacity of work zone. Another main contribution is 

the work zone travel time and its reliability are estimated by applying the speed-volume-

density relationship estimated by modified logistic speed-density model. This study will help 

traffic engineers design more appropriate traffic management strategies to avoid long periods 

of over-saturation. 

6.3 Future Research 

For the future research on corridor level travel time quantification problem, the impacts 

of lane-changing behavior and the temporal correlation on the travel time can be incorporated 

into the model.  

Autonomous vehicle technologies are likely to be gradually implemented over time. 

The existing studies shows that the autonomous vehicle can improve flow string stability and 

reduce traffic congestion (Davis, 2004; Kesting et al., 2008). Therefore, in the future study of 

stochastic modeling problem of car-following model, the impact of connected and autonomous 

vehicle should be considered to improve the travel time reliability estimation model.  

In the future study of travel time reliability problem of work zone, other types of work 

zones needs to be investigated. Moreover, there are some caveats of the proposed method. 

First, the before-and-after study is based on lane closure work zones. In the future, other types 

of work zones need to be investigated. Second, only free-flow speed and α are considered as 
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dependent variables that impact speed-density curve. Future studies should examine the impact 

of work zone intensity, traffic control type and road configuration on the other parameters of 

the logistic model. 
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APPENDIX A.  

DERIVATION OF FIRST AND SECOND CONDITION 

 

The first condition  

∂k∂V = θ� × ∂∂V ���
��log �exp�log �Vº − V×V − V× �θ � − 1����

�� 
Derivation 
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∂∂V �log �exp�log �Vº − V×V − V× �θ � − 1�� = 1
exp�log �Vº − V×V − V× �θ � − 1

× ∂∂V �exp�log �Vº − V×V − V× �θ � − 1�

= 1
exp�log �Vº − V×V − V× �θ � − 1

× ∂∂V �exp�log �Vº − V×V − V× �θ ��

=
exp�log �Vº − V×V − V× �θ �

θ �exp�log �Vº − V×V − V× �θ � − 1�
× ∂∂V �log ÑVº − V×V − V× Ô�

= −
V − V×Vº − V× × exp�log �Vº − V×V − V× �θ �
θ �exp�log �Vº − V×V − V× �θ � − 1�

× ∂∂V �Vº − V×V − V× �

= −
�V − V×� × exp�log �Vº − V×V − V× �θ �

θ �exp�log �Vº − V×V − V× �θ � − 1�
× ∂∂V � 1V − V×�

= −
exp�log �Vº − V×V − V× �θ �

�V − V×� × θ �exp�log �Vº − V×V − V× �θ � − 1�
 

As a result, 
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∂q∂V = ¬ −
θ� × V × exp�log �Vº − V×V − V× �θ �

�V − V×� × θ �exp�log �Vº − V×V − V× �θ � − 1�
 

As a result 

�²�É = ¬ −
V × exp�log �Vf − VbV − Vb �

θ2 �
�V − Vb� × θ2 �exp�log �Vf − VbV − Vb �

θ2 � − 1� = 0 
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The second condition  

∂ q∂V = −
θ� × exp�log �Vº − V×V − V× �θ � ���

���exp�log �Vº − V×V − V× �θ � − 1� × θ × �V − 2V×� + V���
��

�θ × �V − V×�� × �exp�log �Vº − V×V − V× �θ � − 1�
  

Derivation 

∂ q∂V = θ� × ∂∂V �log �exp�log �Vº − V×V − V× �θ � − 1�� − θ� × ∂∂V
���
���
�� V × exp�log �Vº − V×V − V× �θ �
�V − V×� × θ �exp�log �Vº − V×V − V× �θ � − 1����

���
��

= −
θ� × exp�log �Vº − V×V − V× �θ �

�V − V×� × θ �exp�log �Vº − V×V − V× �θ � − 1�
− θ�

× ∂∂V
���
���
�� V × exp�log �Vº − V×V − V× �θ �
�V − V×� × θ �exp�log �Vº − V×V − V× �θ � − 1����

���
��
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∂∂V
���
���
�� V × exp�log �Vº − V×V − V× �θ �
�V − V×� × θ �exp�log �Vº − V×V − V× �θ � − 1����

���
��

= 1θ × ∂∂V
���
���
�� V × exp�log �Vº − V×V − V× �θ �
�V − V×� × �exp�log �Vº − V×V − V× �θ � − 1����

���
��

= 1θ 

×
���
���
��� ∂∂V �V × exp�log �Vº − V×V − V× �θ ��
�V − V×� × �exp�log �Vº − V×V − V× �θ � − 1�

−
V × exp�log �Vº − V×V − V× �θ � × ∂∂V ���

���V − V×� × �exp�log �Vº − V×V − V× �θ � − 1����
��

�V − V×� × �exp�log �Vº − V×V − V× �θ � − 1�
 

���
���
���
 

∂∂V �V × exp�log �Vº − V×V − V× �θ �� = exp�log �Vº − V×V − V× �θ � + ∂∂V �exp�log �Vº − V×V − V× �θ ��

= exp�log �Vº − V×V − V× �θ � −
V × exp�log �Vº − V×V − V× �θ �

θ × �V − V×�  

 

∂∂V ���
���V − V×� × �exp�log �Vº − V×V − V× �θ � − 1����

�� = �exp�log �Vº − V×V − V× �θ � − 1� −
exp�log �Vº − V×V − V× �θ �

θ  
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As a result, 

∂ q∂V = θ� ×
��
��
��
��
−

V × exp�2log �Vº − V×V − V× �θ �
�θ × �V − V×�� × �exp�log �Vº − V×V − V× �θ � − 1�

 

−
2exp�2log �Vº − V×V − V× �θ �

θ × �V − V×� × �exp�log �Vº − V×V − V× �θ � − 1�
 

+
V × exp�log �Vº − V×V − V× �θ �

θ × �V − V×� × �exp�log �Vº − V×V − V× �θ � − 1�

+
V × exp�log �Vº − V×V − V× �θ �

�θ × �V − V×�� × �exp�log �Vº − V×V − V× �θ � − 1���
��
��
��

= −
θ� × exp�log �Vº − V×V − V× �θ ����

���exp�log �Vº − V×V − V× �θ � − 1� × θ × �V − 2V×� + V���
��

�θ × �V − V×�� × �exp�log �Vº − V×V − V× �θ � − 1�
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APPENDIX B.  

DERIVATION OF INFLECTION POINT EQUATION 

 

�²�É = ¬� −
θ1 × V* × exp�log �Vf − VbV* − Vb�

θ2 �
�V* − Vb� × θ2 �exp�log �Vf − VbV* − Vb�

θ2 � − 1� = 0 

 

By substituting Eq. 5 and Eq. 6 into it, we have 

kåæ + ~ ç�log�ç � = θ1 × �Ék + Él − Ék�1 + ç �	��á@� × exp Îlog
�1 + ç �	��á@�θ2 Õ
Ñ Él − Ék�1 + ç �	��á@Ô × θ2 �exp Ñlog��1 + ç �	��á@�θ2 Ô − 1�  

 

As a result, 

¬ìí = θ��V×�1 + ç �	��á@ + Vº − V×��1 + ç �	��
θ 

���Vº − V×� − ~ ç�log�ç � 
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